Structural and optoelectronic characterization of anisotropic two-dimensional materials and applications in polarization-sensitive photodetectors

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2025-01-02 DOI:10.1063/5.0226193
Zhitao Lin, Xianguang Yang, Junda He, Ning Dong, Baojun Li
{"title":"Structural and optoelectronic characterization of anisotropic two-dimensional materials and applications in polarization-sensitive photodetectors","authors":"Zhitao Lin, Xianguang Yang, Junda He, Ning Dong, Baojun Li","doi":"10.1063/5.0226193","DOIUrl":null,"url":null,"abstract":"The omnipresence of polarized light on the surface of the earth, a result of atmospheric scattering, underscores the significance of detecting this light and extracting valuable information regarding the phase and polarization angle. In recent years, there has been a surge in research on polarization-sensitive photodetectors that utilize anisotropic two-dimensional (2D) materials. The essence of these 2D polarization-sensitive photodetectors is rooted in the anisotropic characteristics that arise from the asymmetric crystal lattice of the 2D materials in question. This anisotropy is manifested in both optical and electrical behaviors due to the asymmetrical nature of the crystal structure. This article systematically categorizes anisotropic 2D materials and offers an insightful overview of their crystal structures. It also introduces various optical and electrical characterization techniques designed to elucidate the anisotropic properties of these materials. The focus of the article then shifts to detailing the current state of research in the realm of anisotropic 2D material-based polarization-sensitive photodetectors. It provides a comprehensive description of the working principles behind polarization-sensitive photodetectors with different structural designs, shedding light on the underlying mechanisms that enable their polarization sensitivity. In conclusion, the article summarizes the findings of this review, highlighting the advancements and challenges in the field. Additionally, this review proposes several forward-looking recommendations to guide the future trajectory of research and development in the domain of 2D material-based polarization-sensitive photodetectors.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"15 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0226193","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The omnipresence of polarized light on the surface of the earth, a result of atmospheric scattering, underscores the significance of detecting this light and extracting valuable information regarding the phase and polarization angle. In recent years, there has been a surge in research on polarization-sensitive photodetectors that utilize anisotropic two-dimensional (2D) materials. The essence of these 2D polarization-sensitive photodetectors is rooted in the anisotropic characteristics that arise from the asymmetric crystal lattice of the 2D materials in question. This anisotropy is manifested in both optical and electrical behaviors due to the asymmetrical nature of the crystal structure. This article systematically categorizes anisotropic 2D materials and offers an insightful overview of their crystal structures. It also introduces various optical and electrical characterization techniques designed to elucidate the anisotropic properties of these materials. The focus of the article then shifts to detailing the current state of research in the realm of anisotropic 2D material-based polarization-sensitive photodetectors. It provides a comprehensive description of the working principles behind polarization-sensitive photodetectors with different structural designs, shedding light on the underlying mechanisms that enable their polarization sensitivity. In conclusion, the article summarizes the findings of this review, highlighting the advancements and challenges in the field. Additionally, this review proposes several forward-looking recommendations to guide the future trajectory of research and development in the domain of 2D material-based polarization-sensitive photodetectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各向异性二维材料的结构和光电特性及其在偏振敏感光电探测器中的应用
由于大气散射的结果,地球表面的偏振光无处不在,这强调了探测这种光并提取有关相位和偏振角的有价值信息的重要性。近年来,利用各向异性二维(2D)材料的偏振敏感光电探测器的研究激增。这些二维偏振敏感光电探测器的本质是植根于二维材料的不对称晶格所产生的各向异性特征。由于晶体结构的不对称性,这种各向异性表现在光学和电学行为上。本文系统地对各向异性二维材料进行了分类,并对其晶体结构进行了有见地的概述。它还介绍了各种光学和电学表征技术,旨在阐明这些材料的各向异性特性。然后,文章的重点转移到详细介绍各向异性二维材料偏振敏感光电探测器领域的研究现状。它提供了具有不同结构设计的偏振敏感光电探测器背后的工作原理的全面描述,揭示了使其偏振灵敏度的潜在机制。最后,本文总结了本次综述的发现,突出了该领域的进展和挑战。此外,本文还提出了一些前瞻性的建议,以指导未来二维材料偏振敏感光电探测器领域的研究和发展轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
A flexible phototransistor with simultaneous high mobility and detectivity Magnetic electrides: Recent advances in materials realization and application prospects Giant second harmonic generation in two-dimensional tellurene with synthesis and thickness engineering Nanoscale momentum transport by dual plasmonic vortex design Above 400 K robust ferromagnetic insulating phase in hydrogenated brownmillerite iron oxide films with distinct coordinate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1