On‐Chip Synthesis of Quasi‐2D Semimetals from Multi‐Layer Chalcogenides

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-09-23 DOI:10.1002/adma.202410815
Jun Cai, Huairuo Zhang, Yuanqiu Tan, Zheng Sun, Peng Wu, Rahul Tripathi, Sergiy Krylyuk, Caleb Suhy, Jing Kong, Albert V. Davydov, Zhihong Chen, Joerg Appenzeller
{"title":"On‐Chip Synthesis of Quasi‐2D Semimetals from Multi‐Layer Chalcogenides","authors":"Jun Cai, Huairuo Zhang, Yuanqiu Tan, Zheng Sun, Peng Wu, Rahul Tripathi, Sergiy Krylyuk, Caleb Suhy, Jing Kong, Albert V. Davydov, Zhihong Chen, Joerg Appenzeller","doi":"10.1002/adma.202410815","DOIUrl":null,"url":null,"abstract":"Reducing the dimensions of materials from three to two, or quasi‐two, provides a fertile platform for exploring emergent quantum phenomena and developing next‐generation electronic devices. However, growing high‐quality, ultrathin, quasi2D materials in a templated fashion on an arbitrary substrate is challenging. Here, the study demonstrates a simple and reproducible on‐chip approach for synthesizing non‐layered, nanometer‐thick, quasi‐2D semimetals. In one implementation, this method starts with thin semiconducting InSe flakes of below 20 nm in thickness with nickel deposited on top, followed by a low‐temperature annealing step that results in a controlled transformation of the layered InSe to a non‐layered, crystalline semimetal via reaction with the laterally diffusing nickel. Atomic resolution microscopy reveals the transformed semimetal to be Ni<jats:sub>3</jats:sub>In<jats:sub>2</jats:sub>Se<jats:sub>2</jats:sub> with a Kagome‐lattice structure. Moreover, it is demonstrated that this synthesis method is generalizable by transforming 2D layered chalcogenides such as SnS and SnSe employing Ni and Co to non‐layered semimetals, paving the way for engineering novel types of devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410815","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing the dimensions of materials from three to two, or quasi‐two, provides a fertile platform for exploring emergent quantum phenomena and developing next‐generation electronic devices. However, growing high‐quality, ultrathin, quasi2D materials in a templated fashion on an arbitrary substrate is challenging. Here, the study demonstrates a simple and reproducible on‐chip approach for synthesizing non‐layered, nanometer‐thick, quasi‐2D semimetals. In one implementation, this method starts with thin semiconducting InSe flakes of below 20 nm in thickness with nickel deposited on top, followed by a low‐temperature annealing step that results in a controlled transformation of the layered InSe to a non‐layered, crystalline semimetal via reaction with the laterally diffusing nickel. Atomic resolution microscopy reveals the transformed semimetal to be Ni3In2Se2 with a Kagome‐lattice structure. Moreover, it is demonstrated that this synthesis method is generalizable by transforming 2D layered chalcogenides such as SnS and SnSe employing Ni and Co to non‐layered semimetals, paving the way for engineering novel types of devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层钙钛矿片上合成准二维半金属
将材料的尺寸从三维缩小到二维或准二维,为探索新出现的量子现象和开发下一代电子器件提供了一个肥沃的平台。然而,在任意基底上以模板化方式生长高质量、超薄、准二维材料具有挑战性。本研究展示了一种简单、可重复的片上方法,用于合成非层状、纳米厚的准二维半导体。在一种实施方案中,该方法首先在厚度低于 20 纳米的半导体铟硒薄片上沉积镍,然后进行低温退火步骤,通过与横向扩散的镍发生反应,使分层铟硒受控转变为非分层结晶半金属。原子分辨率显微镜显示,转化后的半金属是具有 Kagome 晶格结构的 Ni3In2Se2。此外,研究还证明这种合成方法具有通用性,可将采用镍和钴的二维层状铬化物(如 SnS 和 SnSe)转化为非层状半金属,从而为设计新型器件铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
On‐Chip Synthesis of Quasi‐2D Semimetals from Multi‐Layer Chalcogenides Ions‐induced Assembly of Perovskite Nanocomposites for Highly Efficient Light‐Emitting Diodes with EQE Exceeding 30% High‐Efficiency, Prevascularization‐Free Macroencapsulation System for Subcutaneous Transplantation of Pancreatic Islets for Enhanced Diabetes Treatment Programming Hydrogen Bonds for Reversible Elastic‐Plastic Phase Transition in a Conductive Stretchable Hydrogel Actuator with Rapid Ultra‐High‐Density Energy Conversion and Multiple Sensory Properties Constructing Organic Phosphorescent Scintillators with Enhanced Triplet Exciton Utilization Through Multi‐Mode Radioluminescence for Efficient X‐Ray Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1