A novel methodology for mapping interstitial fluid dynamics in murine brain tumors using DCE-MRI

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2024-09-14 DOI:10.1016/j.ymeth.2024.09.008
Cora Carman-Esparza , Kathryn Kingsmore , Andrea Vaccari , Skylar Davis , Jessica Cunningham , Maosen Wang , Jennifer Munson
{"title":"A novel methodology for mapping interstitial fluid dynamics in murine brain tumors using DCE-MRI","authors":"Cora Carman-Esparza ,&nbsp;Kathryn Kingsmore ,&nbsp;Andrea Vaccari ,&nbsp;Skylar Davis ,&nbsp;Jessica Cunningham ,&nbsp;Maosen Wang ,&nbsp;Jennifer Munson","doi":"10.1016/j.ymeth.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>We present a comprehensive methodology for measuring heterogeneous interstitial fluid flow in murine brain tumors using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) coupled with the computational tool, <em>Lymph4D</em>. This four-part protocol encompasses glioma cell preparation, tumor inoculation, MRI imaging protocol, and histological verification using Evans Blue. While conventional DCE-MRI analysis primarily focuses on vascular perfusion, our methods reveal untapped potential to extract crucial information about interstitial fluid dynamics, including directions, velocities, and diffusion coefficients. This methodology extends beyond glioma research, with applicability to conditions routinely imaged with DCE-MRI, thereby offering a versatile tool for investigating interstitial fluid dynamics across a wide range of diseases and conditions. Our methodology holds promise for accelerating discoveries and advancements in biomedical research, ultimately enhancing diagnostic and therapeutic strategies for a wide range of diseases and conditions.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"231 ","pages":"Pages 78-93"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive methodology for measuring heterogeneous interstitial fluid flow in murine brain tumors using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) coupled with the computational tool, Lymph4D. This four-part protocol encompasses glioma cell preparation, tumor inoculation, MRI imaging protocol, and histological verification using Evans Blue. While conventional DCE-MRI analysis primarily focuses on vascular perfusion, our methods reveal untapped potential to extract crucial information about interstitial fluid dynamics, including directions, velocities, and diffusion coefficients. This methodology extends beyond glioma research, with applicability to conditions routinely imaged with DCE-MRI, thereby offering a versatile tool for investigating interstitial fluid dynamics across a wide range of diseases and conditions. Our methodology holds promise for accelerating discoveries and advancements in biomedical research, ultimately enhancing diagnostic and therapeutic strategies for a wide range of diseases and conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 DCE-MRI 绘制小鼠脑肿瘤间质流体动力学图的新方法。
我们介绍了一种利用动态对比增强磁共振成像(DCE-MRI)和计算工具 Lymph4D 测量小鼠脑肿瘤异质性间质流的综合方法。该方案由四个部分组成,包括胶质瘤细胞制备、肿瘤接种、磁共振成像方案和使用伊文思蓝进行组织学验证。传统的 DCE-MRI 分析主要关注血管灌注,而我们的方法揭示了提取间质流体动力学关键信息(包括方向、速度和扩散系数)的未开发潜力。这种方法不仅适用于胶质瘤研究,还适用于 DCE-MRI 常规成像的病症,从而为研究各种疾病和病症的间质流体动力学提供了多功能工具。我们的方法有望加速生物医学研究的发现和进步,最终提高各种疾病和病症的诊断和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
Robust feature learning using contractive autoencoders for multi-omics clustering in cancer subtyping. Optimizing retinal Imaging: Evaluation of ultrasmall TiO2 Nanoparticle- fluorescein conjugates for improved Fundus fluorescein angiography. Ab-Amy 2.0: Predicting light chain amyloidogenic risk of therapeutic antibodies based on antibody language model. Data preprocessing methods for selective sweep detection using convolutional neural networks. SITP: A single cell bioinformatics analysis flow captures proteasome markers in the development of breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1