Data Preprocessing Methods for Selective Sweep Detection using Convolutional Neural Networks.

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2024-11-14 DOI:10.1016/j.ymeth.2024.11.003
Hanqing Zhao, Nikolaos Alachiotis
{"title":"Data Preprocessing Methods for Selective Sweep Detection using Convolutional Neural Networks.","authors":"Hanqing Zhao, Nikolaos Alachiotis","doi":"10.1016/j.ymeth.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of positive selection has been framed as a classification task, with Convolutional Neural Networks (CNNs) already outperforming summary statistics and likelihood-based approaches in accuracy. Despite the prevalence of CNN-based methods that manipulate the pixels of images representing raw genomic data as a preprocessing step to improve classification accuracy, the efficacy of these pixel-rearrangement techniques remains inadequately examined, particularly in the presence of confounding factors like population bottlenecks, migration and recombination hotspots. We introduce a set of pixel rearrangement algorithms aimed at enhancing CNN classification accuracy in detecting selective sweeps. These algorithms are employed to assess the performance of four CNN models for selective sweep detection. Our findings illustrate that the judicious application of rearrangement algorithms notably enhances the overall classification accuracy of a CNN across various datasets simulating confounding factors. We observed that sorting the columns of the genomic matrices has higher on CNN performance than rearranging the sequences. To some extent, these rearrangement algorithms are more robust to misspecified demographic models compared with the utilization of the default preprocessing algorithm as suggested by the respective authors of each CNN architecture. We provide the data rearrangement algorithms as a distinct package available for download at: https://github.com/Zhaohq96/Genetic-data-rearrangement.</p>","PeriodicalId":390,"journal":{"name":"Methods","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymeth.2024.11.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of positive selection has been framed as a classification task, with Convolutional Neural Networks (CNNs) already outperforming summary statistics and likelihood-based approaches in accuracy. Despite the prevalence of CNN-based methods that manipulate the pixels of images representing raw genomic data as a preprocessing step to improve classification accuracy, the efficacy of these pixel-rearrangement techniques remains inadequately examined, particularly in the presence of confounding factors like population bottlenecks, migration and recombination hotspots. We introduce a set of pixel rearrangement algorithms aimed at enhancing CNN classification accuracy in detecting selective sweeps. These algorithms are employed to assess the performance of four CNN models for selective sweep detection. Our findings illustrate that the judicious application of rearrangement algorithms notably enhances the overall classification accuracy of a CNN across various datasets simulating confounding factors. We observed that sorting the columns of the genomic matrices has higher on CNN performance than rearranging the sequences. To some extent, these rearrangement algorithms are more robust to misspecified demographic models compared with the utilization of the default preprocessing algorithm as suggested by the respective authors of each CNN architecture. We provide the data rearrangement algorithms as a distinct package available for download at: https://github.com/Zhaohq96/Genetic-data-rearrangement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络进行选择性扫频检测的数据预处理方法。
阳性选择的识别被视为一项分类任务,卷积神经网络(CNN)的准确性已经超过了汇总统计和基于似然法的方法。尽管基于卷积神经网络的方法非常普遍,这些方法通过处理代表原始基因组数据的图像像素作为提高分类准确性的预处理步骤,但这些像素重排技术的功效仍未得到充分检验,尤其是在存在种群瓶颈、迁移和重组热点等混杂因素的情况下。我们介绍了一套像素重排算法,旨在提高 CNN 在检测选择性扫描时的分类准确性。我们利用这些算法评估了四种 CNN 模型在选择性扫描检测方面的性能。我们的研究结果表明,在各种模拟混杂因素的数据集上,合理应用重排算法可显著提高 CNN 的整体分类准确性。我们观察到,对基因组矩阵列进行排序比重新排列序列对 CNN 性能的影响更大。在某种程度上,与使用每个 CNN 架构的作者所建议的默认预处理算法相比,这些重新排列算法对指定错误的人口模型更具鲁棒性。我们将数据重新排列算法作为一个单独的软件包提供给大家下载:https://github.com/Zhaohq96/Genetic-data-rearrangement。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
Ab-Amy 2.0: Predicting light chain amyloidogenic risk of therapeutic antibodies based on antibody language model. SITP: A single cell bioinformatics analysis flow captures proteasome markers in the development of breast cancer Data Preprocessing Methods for Selective Sweep Detection using Convolutional Neural Networks. Exploring drug-target interaction prediction on cold-start scenarios via meta-learning-based graph transformer. MVCLST: A spatial transcriptome data analysis pipeline for cell type classification based on multi-view comparative learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1