Heterogeneous latent transfer learning in Gaussian graphical models.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae096
Qiong Wu, Chi Wang, Yong Chen
{"title":"Heterogeneous latent transfer learning in Gaussian graphical models.","authors":"Qiong Wu, Chi Wang, Yong Chen","doi":"10.1093/biomtc/ujae096","DOIUrl":null,"url":null,"abstract":"<p><p>Gaussian graphical models (GGMs) are useful for understanding the complex relationships between biological entities. Transfer learning can improve the estimation of GGMs in a target dataset by incorporating relevant information from related source studies. However, biomedical research often involves intrinsic and latent heterogeneity within a study, such as heterogeneous subpopulations. This heterogeneity can make it difficult to identify informative source studies or lead to negative transfer if the source study is improperly used. To address this challenge, we developed a heterogeneous latent transfer learning (Latent-TL) approach that accounts for both within-sample and between-sample heterogeneity. The idea behind this approach is to \"learn from the alike\" by leveraging the similarities between source and target GGMs within each subpopulation. The Latent-TL algorithm simultaneously identifies common subpopulation structures among samples and facilitates the learning of target GGMs using source samples from the same subpopulation. Through extensive simulations and real data application, we have shown that the proposed method outperforms single-site learning and standard transfer learning that ignores the latent structures. We have also demonstrated the applicability of the proposed algorithm in characterizing gene co-expression networks in breast cancer patients, where the inferred genetic networks identified many biologically meaningful gene-gene interactions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian graphical models (GGMs) are useful for understanding the complex relationships between biological entities. Transfer learning can improve the estimation of GGMs in a target dataset by incorporating relevant information from related source studies. However, biomedical research often involves intrinsic and latent heterogeneity within a study, such as heterogeneous subpopulations. This heterogeneity can make it difficult to identify informative source studies or lead to negative transfer if the source study is improperly used. To address this challenge, we developed a heterogeneous latent transfer learning (Latent-TL) approach that accounts for both within-sample and between-sample heterogeneity. The idea behind this approach is to "learn from the alike" by leveraging the similarities between source and target GGMs within each subpopulation. The Latent-TL algorithm simultaneously identifies common subpopulation structures among samples and facilitates the learning of target GGMs using source samples from the same subpopulation. Through extensive simulations and real data application, we have shown that the proposed method outperforms single-site learning and standard transfer learning that ignores the latent structures. We have also demonstrated the applicability of the proposed algorithm in characterizing gene co-expression networks in breast cancer patients, where the inferred genetic networks identified many biologically meaningful gene-gene interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯图形模型中的异质潜移默化学习。
高斯图形模型(GGM)有助于理解生物实体之间的复杂关系。迁移学习可以通过纳入相关源研究的相关信息来改进目标数据集中高斯图模型的估计。然而,生物医学研究往往涉及研究中的内在和潜在异质性,如异质性亚群。这种异质性可能会导致难以识别信息来源研究,或者在来源研究使用不当的情况下导致负迁移。为了应对这一挑战,我们开发了一种异质性潜移默化迁移学习(Latent-TL)方法,它同时考虑了样本内和样本间的异质性。这种方法背后的理念是利用每个子群中源和目标 GGM 之间的相似性来 "从相似中学习"。Latent-TL 算法能同时识别样本间共同的亚群结构,并利用来自同一亚群的源样本促进目标 GGM 的学习。通过大量的模拟和实际数据应用,我们证明了所提出的方法优于忽略潜在结构的单点学习和标准迁移学习。我们还证明了所提算法在表征乳腺癌患者基因共表达网络中的适用性,推断出的基因网络发现了许多具有生物学意义的基因-基因相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1