Haojie Jin, Wanzhao Ge, Mengzhe Li, Yan Wang, Yanjing Jiang, Jiaqi Zhang, Yike Jing, Yigang Tong, Yujie Fu
{"title":"Advances in the development of phage-mediated cyanobacterial cell lysis.","authors":"Haojie Jin, Wanzhao Ge, Mengzhe Li, Yan Wang, Yanjing Jiang, Jiaqi Zhang, Yike Jing, Yigang Tong, Yujie Fu","doi":"10.1080/07388551.2024.2399530","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria, the only oxygenic photoautotrophs among prokaryotes, are developing as both carbon building blocks and energetic self-supported chassis for the generation of various bioproducts. However, one of the challenges to optimize it as a more sustainable platform is how to release intracellular bioproducts for an easier downstream biorefinery process. To date, the major method used for cyanobacterial cell lysis is based on mechanical force, which is energy-intensive and economically unsustainable. Phage-mediated bacterial cell lysis is species-specific and highly efficient and can be conducted under mild conditions; therefore, it has been intensively studied as a bacterial cell lysis weapon. In contrast to heterotrophic bacteria, biological cell lysis studies in cyanobacteria are lagging behind. In this study, we reviewed cyanobacterial cell envelope features that could affect cell strength and elicited a thorough presentation of the necessary phage lysin components for efficient cell lysis. We then summarized all bioengineering manipulated pipelines for lysin component optimization and further revealed the challenges for each intent-oriented application in cyanobacterial cell lysis. In addition to applied biotechnology usage, the significance of phage-mediated cyanobacterial cell lysis could also advance sophisticated biochemical studies and promote biocontrol of toxic cyanobacteria blooms.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2024.2399530","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria, the only oxygenic photoautotrophs among prokaryotes, are developing as both carbon building blocks and energetic self-supported chassis for the generation of various bioproducts. However, one of the challenges to optimize it as a more sustainable platform is how to release intracellular bioproducts for an easier downstream biorefinery process. To date, the major method used for cyanobacterial cell lysis is based on mechanical force, which is energy-intensive and economically unsustainable. Phage-mediated bacterial cell lysis is species-specific and highly efficient and can be conducted under mild conditions; therefore, it has been intensively studied as a bacterial cell lysis weapon. In contrast to heterotrophic bacteria, biological cell lysis studies in cyanobacteria are lagging behind. In this study, we reviewed cyanobacterial cell envelope features that could affect cell strength and elicited a thorough presentation of the necessary phage lysin components for efficient cell lysis. We then summarized all bioengineering manipulated pipelines for lysin component optimization and further revealed the challenges for each intent-oriented application in cyanobacterial cell lysis. In addition to applied biotechnology usage, the significance of phage-mediated cyanobacterial cell lysis could also advance sophisticated biochemical studies and promote biocontrol of toxic cyanobacteria blooms.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.