A comparative guide to expression systems for phage lysin production.

IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Essays in biochemistry Pub Date : 2024-09-18 DOI:10.1042/EBC20240019
Emma Cremelie, Roberto Vázquez, Yves Briers
{"title":"A comparative guide to expression systems for phage lysin production.","authors":"Emma Cremelie, Roberto Vázquez, Yves Briers","doi":"10.1042/EBC20240019","DOIUrl":null,"url":null,"abstract":"<p><p>Phage lysins, bacteriophage-encoded enzymes tasked with degrading their host's cell wall, are increasingly investigated and engineered as novel antibacterials across diverse applications. Their rapid action, tuneable specificity, and low likelihood of resistance development make them particularly interesting. Despite numerous application-focused lysin studies, the art of their recombinant production remains relatively undiscussed. Here, we provide an overview of the available expression systems for phage lysin production and discuss key considerations guiding the choice of a suitable recombinant host. We systematically surveyed recent literature to evaluate the hosts used in the lysin field and cover various recombinant systems, including the well-known bacterial host Escherichia coli or yeast Saccharomyces cerevisiae, as well as plant, mammalian, and cell-free systems. Careful analysis of the limited studies expressing lysins in various hosts suggests a host-dependent effect on activity. Nonetheless, the multitude of available expression systems should be further leveraged to accommodate the growing interest in phage lysins and their expanding range of applications.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20240019","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phage lysins, bacteriophage-encoded enzymes tasked with degrading their host's cell wall, are increasingly investigated and engineered as novel antibacterials across diverse applications. Their rapid action, tuneable specificity, and low likelihood of resistance development make them particularly interesting. Despite numerous application-focused lysin studies, the art of their recombinant production remains relatively undiscussed. Here, we provide an overview of the available expression systems for phage lysin production and discuss key considerations guiding the choice of a suitable recombinant host. We systematically surveyed recent literature to evaluate the hosts used in the lysin field and cover various recombinant systems, including the well-known bacterial host Escherichia coli or yeast Saccharomyces cerevisiae, as well as plant, mammalian, and cell-free systems. Careful analysis of the limited studies expressing lysins in various hosts suggests a host-dependent effect on activity. Nonetheless, the multitude of available expression systems should be further leveraged to accommodate the growing interest in phage lysins and their expanding range of applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噬菌体溶酶生产表达系统比较指南。
噬菌体溶菌素是一种由噬菌体编码的酶,其任务是降解宿主的细胞壁,越来越多的研究和工程设计将其作为新型抗菌剂应用于各种领域。溶菌酶作用迅速、特异性可调、产生抗药性的可能性低,这些特点使其格外引人关注。尽管对溶菌酶的应用进行了大量研究,但对其重组生产技术的讨论仍相对较少。在此,我们概述了可用来生产噬菌体溶菌素的表达系统,并讨论了指导选择合适重组宿主的关键因素。我们系统调查了最近的文献,评估了溶菌素领域使用的宿主,涵盖了各种重组系统,包括众所周知的细菌宿主大肠杆菌或酵母,以及植物、哺乳动物和无细胞系统。对在各种宿主中表达溶菌素的有限研究进行仔细分析后发现,溶菌素的活性受宿主的影响。不过,随着人们对噬菌体溶菌素及其应用范围的不断扩大,应该进一步利用现有的多种表达系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Essays in biochemistry
Essays in biochemistry 生物-生化与分子生物学
CiteScore
10.50
自引率
0.00%
发文量
105
审稿时长
>12 weeks
期刊介绍: Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic. Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points. Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place. Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.
期刊最新文献
NUAK: never underestimate a kinase. New developments in AMPK and mTORC1 cross-talk. How mass spectrometry can be exploited to study AMPK. New concepts in the roles of AMPK in adipocyte stem cell biology. Does AMPK bind glycogen in skeletal muscle or is the relationship correlative?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1