Yinlian Yao , Shilong Fan , Yinqiang Fan , Xin Shen , Xingxing Chai , Jiang Pi , Xueqin Huang , Yiming Shao , Zhikun Zhou , Yue Zhao , Hua Jin
{"title":"Intratracheal delivery of macrophage targeted Celastrol-loaded PLGA nanoparticles for enhanced anti-inflammatory efficacy in acute lung injury mice","authors":"Yinlian Yao , Shilong Fan , Yinqiang Fan , Xin Shen , Xingxing Chai , Jiang Pi , Xueqin Huang , Yiming Shao , Zhikun Zhou , Yue Zhao , Hua Jin","doi":"10.1016/j.ejpb.2024.114511","DOIUrl":null,"url":null,"abstract":"<div><div>Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common causes of respiratory failure in critically ill patients. There is still a lack of definitive and effective treatment options, and the mortality rate remains as high as 30% to 40%. Effective therapeutics for ALI/ARDS are greatly hindered by the side effects resulting from inefficient delivery to the disease lesions and off-targeting biodistribution of drugs. Macrophages play an integral role in maintaining the steady state of the immune system and are involved in inflammation processes. Thus, nanodrug to accurately target macrophages have the potential to transform disease treatment. Here, we developed an mannosylated drug delivery system to target and deliver celastrol (Cel) to the alveolar macrophages for enhanced alleviating the cytokines in LPS-induce ALI mice. <em>In vitro</em> data demonstrated that the as-synthesized Man@Cel-NPs significantly improved the targeting of Cel into the inflammatory macrophages via mannose receptor-mediated phagocytosis. <em>In vivo</em> experiments further showed that intratracheal delivery of Man@Cel-NPs can improve the dysregulation of inflammatory response in LPS-induced mice by inhibiting the release of inflammatory cytokines and increasing autophagy and decreasing apoptosis in lungs. This work provides a potential NP platform for the locally tracheal delivery of herbal ingredients and exhibits promising clinical potential in the treatment of numerous respiratory diseases, including ALI/ARDS.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114511"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003370","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common causes of respiratory failure in critically ill patients. There is still a lack of definitive and effective treatment options, and the mortality rate remains as high as 30% to 40%. Effective therapeutics for ALI/ARDS are greatly hindered by the side effects resulting from inefficient delivery to the disease lesions and off-targeting biodistribution of drugs. Macrophages play an integral role in maintaining the steady state of the immune system and are involved in inflammation processes. Thus, nanodrug to accurately target macrophages have the potential to transform disease treatment. Here, we developed an mannosylated drug delivery system to target and deliver celastrol (Cel) to the alveolar macrophages for enhanced alleviating the cytokines in LPS-induce ALI mice. In vitro data demonstrated that the as-synthesized Man@Cel-NPs significantly improved the targeting of Cel into the inflammatory macrophages via mannose receptor-mediated phagocytosis. In vivo experiments further showed that intratracheal delivery of Man@Cel-NPs can improve the dysregulation of inflammatory response in LPS-induced mice by inhibiting the release of inflammatory cytokines and increasing autophagy and decreasing apoptosis in lungs. This work provides a potential NP platform for the locally tracheal delivery of herbal ingredients and exhibits promising clinical potential in the treatment of numerous respiratory diseases, including ALI/ARDS.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.