{"title":"Sensorless End-to-End Freehand Three-dimensional Ultrasound Reconstruction with Physics Guided Deep Learning.","authors":"Yimeng Dou, Fangzhou Mu, Yin Li, Tomy Varghese","doi":"10.1109/TUFFC.2024.3465214","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional ultrasound (3D US) imaging with freehand scanning is utilized in cardiac, obstetric, abdominal, and vascular examinations. While 3D US using either a 'wobbler' or 'matrix' transducer suffers from a small field of view and low acquisition rates, freehand scanning offers significant advantages due to its ease of use. However, current 3D US volumetric reconstruction methods with freehand sweeps are limited by imaging plane shifts along the scanning path, i.e., out-of-plane (OOP) motion. Prior studies have incorporated motion sensors attached to the transducer, which is cumbersome and inconvenient in a clinical setting. Recent work has introduced deep neural networks (DNNs) with 3D convolutions to estimate the position of imaging planes from a series of input frames. These approaches, however, fall short for estimating OOP motion. The goal of this paper is to bridge the gap by designing a novel, physics inspired DNN for freehand 3D US reconstruction without motion sensors, aiming to improve the reconstruction quality, and at the same time, to reduce computational resources needed for training and inference. To this end, we present our physics guided learning-based prediction of pose information (PLPPI) model for 3D freehand US reconstruction without 3D convolution. PLPPI yields significantly more accurate reconstructions and offers a major reduction in computation time. It attains a performance increase in the double digits in terms of mean percentage error, with up to 106% speedup and 131% reduction in Graphic Processing Unit (GPU) memory usage, when compared to latest deep learning methods.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2024.3465214","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional ultrasound (3D US) imaging with freehand scanning is utilized in cardiac, obstetric, abdominal, and vascular examinations. While 3D US using either a 'wobbler' or 'matrix' transducer suffers from a small field of view and low acquisition rates, freehand scanning offers significant advantages due to its ease of use. However, current 3D US volumetric reconstruction methods with freehand sweeps are limited by imaging plane shifts along the scanning path, i.e., out-of-plane (OOP) motion. Prior studies have incorporated motion sensors attached to the transducer, which is cumbersome and inconvenient in a clinical setting. Recent work has introduced deep neural networks (DNNs) with 3D convolutions to estimate the position of imaging planes from a series of input frames. These approaches, however, fall short for estimating OOP motion. The goal of this paper is to bridge the gap by designing a novel, physics inspired DNN for freehand 3D US reconstruction without motion sensors, aiming to improve the reconstruction quality, and at the same time, to reduce computational resources needed for training and inference. To this end, we present our physics guided learning-based prediction of pose information (PLPPI) model for 3D freehand US reconstruction without 3D convolution. PLPPI yields significantly more accurate reconstructions and offers a major reduction in computation time. It attains a performance increase in the double digits in terms of mean percentage error, with up to 106% speedup and 131% reduction in Graphic Processing Unit (GPU) memory usage, when compared to latest deep learning methods.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.