A Novel 2x2D Radial Basis Function-Based Interpolation for Short Acquisition Time and Relaxed Frame Rate Ultrasound Localization Microscopy

Sajjad Afrakhteh;Giulia Tuccio;Libertario Demi
{"title":"A Novel 2x2D Radial Basis Function-Based Interpolation for Short Acquisition Time and Relaxed Frame Rate Ultrasound Localization Microscopy","authors":"Sajjad Afrakhteh;Giulia Tuccio;Libertario Demi","doi":"10.1109/TUFFC.2024.3515218","DOIUrl":null,"url":null,"abstract":"Ultrasound localization microscopy (ULM) has become a potent technique for microvascular imaging using ultrasound waves. However, one major challenge is the high frame rate and lengthy acquisition time needed to produce super-resolved (SR) images. To overcome this, our goal is to relax the frame rate and shorten this acquisition time while preserving SR image quality, thereby enhancing ULM’s clinical applicability. To this end, we propose two distinct strategies: first, we suggest acquiring the data at lower frame rate followed by applying the reconstruction technique to compensate the lost information due to low frame rate imaging. Second, to tackle the prolonged acquisition time, we propose compressing acquisition time by a compression ratio (CR), which can degrade SR image quality due to reduced temporal information. To mitigate this, we temporally upsample the in-phase-quadrature (IQ) data by a factor equal to the CR after compressed acquisition. In addition, we introduce a novel bidirectional (2x2D) interpolation (IP) using radial basis function (RBF)-based reconstruction to estimate unknown values in the 3D IQ data (x–z–t), thereby enhancing temporal resolution. The rationale behind using 2x2D IP is its ability to integrate spatiotemporal information from two orthogonal x–t and z–t planes, effectively addressing anisotropies and nonuniformities in microbubble motion. This 2x2D approach improves the reconstruction of microbubbles’ dynamics by interpolating along both the x- and z-directions. The method was tested on rat brain and rat kidney datasets recorded at 1 kHz, demonstrating relaxing the frame rate to 100 Hz (using the first strategy) and a reduction in acquisition time by a factor of 3 to 4 (using the second strategy) while maintaining SR image quality comparable to the original uncompressed data, including density and velocity maps.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 12: Breaking the Resolution Barrier in Ultrasound","pages":"1855-1867"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10793238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10793238/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound localization microscopy (ULM) has become a potent technique for microvascular imaging using ultrasound waves. However, one major challenge is the high frame rate and lengthy acquisition time needed to produce super-resolved (SR) images. To overcome this, our goal is to relax the frame rate and shorten this acquisition time while preserving SR image quality, thereby enhancing ULM’s clinical applicability. To this end, we propose two distinct strategies: first, we suggest acquiring the data at lower frame rate followed by applying the reconstruction technique to compensate the lost information due to low frame rate imaging. Second, to tackle the prolonged acquisition time, we propose compressing acquisition time by a compression ratio (CR), which can degrade SR image quality due to reduced temporal information. To mitigate this, we temporally upsample the in-phase-quadrature (IQ) data by a factor equal to the CR after compressed acquisition. In addition, we introduce a novel bidirectional (2x2D) interpolation (IP) using radial basis function (RBF)-based reconstruction to estimate unknown values in the 3D IQ data (x–z–t), thereby enhancing temporal resolution. The rationale behind using 2x2D IP is its ability to integrate spatiotemporal information from two orthogonal x–t and z–t planes, effectively addressing anisotropies and nonuniformities in microbubble motion. This 2x2D approach improves the reconstruction of microbubbles’ dynamics by interpolating along both the x- and z-directions. The method was tested on rat brain and rat kidney datasets recorded at 1 kHz, demonstrating relaxing the frame rate to 100 Hz (using the first strategy) and a reduction in acquisition time by a factor of 3 to 4 (using the second strategy) while maintaining SR image quality comparable to the original uncompressed data, including density and velocity maps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Publication Information A Novel 2x2D Radial Basis Function-Based Interpolation for Short Acquisition Time and Relaxed Frame Rate Ultrasound Localization Microscopy Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1