Ravi Pal, Joshua Le, Akos Rudas, Jeffrey N Chiang, Tiffany Williams, Brenton Alexander, Alexandre Joosten, Maxime Cannesson
{"title":"A review of machine learning methods for non-invasive blood pressure estimation.","authors":"Ravi Pal, Joshua Le, Akos Rudas, Jeffrey N Chiang, Tiffany Williams, Brenton Alexander, Alexandre Joosten, Maxime Cannesson","doi":"10.1007/s10877-024-01221-7","DOIUrl":null,"url":null,"abstract":"<p><p>Blood pressure is a very important clinical measurement, offering valuable insights into the hemodynamic status of patients. Regular monitoring is crucial for early detection, prevention, and treatment of conditions like hypotension and hypertension, both of which increasing morbidity for a wide variety of reasons. This monitoring can be done either invasively or non-invasively and intermittently vs. continuously. An invasive method is considered the gold standard and provides continuous measurement, but it carries higher risks of complications such as infection, bleeding, and thrombosis. Non-invasive techniques, in contrast, reduce these risks and can provide intermittent or continuous blood pressure readings. This review explores modern machine learning-based non-invasive methods for blood pressure estimation, discussing their advantages, limitations, and clinical relevance.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-024-01221-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Blood pressure is a very important clinical measurement, offering valuable insights into the hemodynamic status of patients. Regular monitoring is crucial for early detection, prevention, and treatment of conditions like hypotension and hypertension, both of which increasing morbidity for a wide variety of reasons. This monitoring can be done either invasively or non-invasively and intermittently vs. continuously. An invasive method is considered the gold standard and provides continuous measurement, but it carries higher risks of complications such as infection, bleeding, and thrombosis. Non-invasive techniques, in contrast, reduce these risks and can provide intermittent or continuous blood pressure readings. This review explores modern machine learning-based non-invasive methods for blood pressure estimation, discussing their advantages, limitations, and clinical relevance.
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.