{"title":"POSE: POSition Encoding for accelerated quantitative MRI","authors":"Albert Jang , Fang Liu","doi":"10.1016/j.mri.2024.110239","DOIUrl":null,"url":null,"abstract":"<div><div>Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of <span><math><msub><mi>T</mi><mn>1</mn></msub></math></span> values. In vivo results not only exhibit good agreement with the reference method, but also show <em>g</em>-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"114 ","pages":"Article 110239"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative MRI utilizes multiple acquisitions with varying sequence parameters to sufficiently characterize a biophysical model of interest, resulting in undesirable scan times. Here we propose, validate and demonstrate a new general strategy for accelerating MRI using subvoxel shifting as a source of encoding called POSition Encoding (POSE). The POSE framework applies unique subvoxel shifts along the acquisition parameter dimension, thereby creating an extra source of encoding. Combining with a biophysical signal model of interest, accelerated and enhanced resolution maps of biophysical parameters are obtained. This has been validated and demonstrated through numerical Bloch equation simulations, phantom experiments and in vivo experiments using the variable flip angle signal model in 3D acquisitions as an application example. Monte Carlo simulations were performed using in vivo data to investigate our method's noise performance. POSE quantification results from numerical Bloch equation simulations of both a numerical phantom and realistic digital brain phantom concur well with the reference method, validating our method both theoretically and for realistic situations. NIST phantom experiment results show excellent overall agreement with the reference method, confirming our method's applicability for a wide range of values. In vivo results not only exhibit good agreement with the reference method, but also show g-factors that significantly outperforms conventional parallel imaging methods with identical acceleration. Furthermore, our results show that POSE can be combined with parallel imaging to further accelerate while maintaining superior noise performance over parallel imaging that uses lower acceleration factors.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.