An-Ping Chen, Peng Gao, Liang Lin, Preeti Ashok, Hongzhi He, Chao Ma, David Li Zou, Vincent Allain, Alex Boyne, Alexandre Juillerat, Philippe Duchateau, Armin Rath, Daniel Teper, Antonio Arulanandam, Hao-Ming Chang, Justin Eyquem, Wei Li
{"title":"An improved approach to generate IL-15<sup>+/+</sup>/TGFβR2<sup>-/-</sup> iPSC-derived natural killer cells using TALEN.","authors":"An-Ping Chen, Peng Gao, Liang Lin, Preeti Ashok, Hongzhi He, Chao Ma, David Li Zou, Vincent Allain, Alex Boyne, Alexandre Juillerat, Philippe Duchateau, Armin Rath, Daniel Teper, Antonio Arulanandam, Hao-Ming Chang, Justin Eyquem, Wei Li","doi":"10.1016/j.crmeth.2024.100857","DOIUrl":null,"url":null,"abstract":"<p><p>We present a TALEN-based workflow to generate and maintain dual-edited (IL-15<sup>+/+</sup>/TGFβR2<sup>-/-</sup>) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs. Furthermore, given that it is known that knockout (KO) of TGFβR2 in immune cells can enhance resistance to the suppressive TGF-β signaling in the tumor microenvironment, we develop a customized medium containing Nodal that can maintain the pluripotency of iPSCs with TGFβR2 KO, enabling banking of these iPSC clones. Ultimately, we show that the dual-edited IL-15<sup>+/+</sup>/TGFβR2<sup>-/-</sup> iPSCs can be efficiently differentiated into NK cells that show enhanced autonomous growth and are resistant to the suppressive TGF-β signaling.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a TALEN-based workflow to generate and maintain dual-edited (IL-15+/+/TGFβR2-/-) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs. Furthermore, given that it is known that knockout (KO) of TGFβR2 in immune cells can enhance resistance to the suppressive TGF-β signaling in the tumor microenvironment, we develop a customized medium containing Nodal that can maintain the pluripotency of iPSCs with TGFβR2 KO, enabling banking of these iPSC clones. Ultimately, we show that the dual-edited IL-15+/+/TGFβR2-/- iPSCs can be efficiently differentiated into NK cells that show enhanced autonomous growth and are resistant to the suppressive TGF-β signaling.