SynBot is an open-source image analysis software for automated quantification of synapses.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-09-16 Epub Date: 2024-09-09 DOI:10.1016/j.crmeth.2024.100861
Justin T Savage, Juan J Ramirez, W Christopher Risher, Yizhi Wang, Dolores Irala, Cagla Eroglu
{"title":"SynBot is an open-source image analysis software for automated quantification of synapses.","authors":"Justin T Savage, Juan J Ramirez, W Christopher Risher, Yizhi Wang, Dolores Irala, Cagla Eroglu","doi":"10.1016/j.crmeth.2024.100861","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of neuroscience. Immunohistochemistry is a common tool for visualizing synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low-throughput analysis methods that are challenging to learn, and the results are variable between experimenters, especially when analyzing noisy images of brain tissue. We developed an open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of neuroscience. Immunohistochemistry is a common tool for visualizing synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low-throughput analysis methods that are challenging to learn, and the results are variable between experimenters, especially when analyzing noisy images of brain tissue. We developed an open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SynBot 是一款用于自动量化突触的开源图像分析软件。
形成精确数量的神经元连接(称为突触)对大脑功能至关重要。因此,突触发生机制一直是神经科学研究的重点之一。免疫组化是观察突触的常用工具。因此,从光学显微镜图像中量化突触的数量可以筛查实验操作对突触发育的影响。尽管这种方法很有用,但它与低通量分析方法搭配使用时,学习难度很大,而且不同实验者的结果也不尽相同,尤其是在分析嘈杂的脑组织图像时。我们开发了一款基于 ImageJ 的开源软件 SynBot,通过自动化分析来解决这些技术瓶颈。SynBot 采用了先进的 ilastik 和 SynQuant 算法,可对突触点进行精确的阈值识别,用户可轻松修改代码。使用该软件可以快速、可重复地筛选健康和疾病神经系统中的突触表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1