{"title":"Loss-of-function mutation in anthocyanidin reductase activates the anthocyanin synthesis pathway in strawberry.","authors":"Pengbo Xu, Maobai Li, Chao Ma, Xinyu Li, Peng Bai, Anqi Lin, Chong Wang, Liqing Zhang, Huiyun Kuang, Hongli Lian","doi":"10.1186/s43897-024-00106-2","DOIUrl":null,"url":null,"abstract":"<p><p>Fruit color substantially affects consumer preferences, with darker red strawberries being economically more valuable due to their higher anthocyanin content. However, the molecular basis for the dark red coloration remains unclear. Through screening of an ethyl methanesulfonate mutant library, we identified a rg418 mutant, that demonstrated anthocyanin accumulation during early fruit development stages. Furthermore, the ripening fruits of this mutant had higher anthocyanin content than wild-type (WT) fruits. An analysis of flavonoid content in WT and rg418 mutant fruits revealed substantial changes in metabolic fluxes, with the mutant exhibiting increased levels of anthocyanins and flavonols and decreased levels of proanthocyanidins. Bulked sergeant analysis sequencing indicated that the mutant gene was anthocyanidin reductase (ANR), a key gene in the proanthocyanidin synthesis pathway. Furthermore, transcriptome sequencing revealed the increased expression of MYB105 during the early development stage of mutant fruits, which promoted the expression of UFGT (UDP-glucose flavonoid 3-O-glucosyltransferase), a key gene involved in anthocyanin synthesis, thus substantially enhancing the anthocyanin content in the mutant fruits. Additionally, mutating ANR in a white-fruited strawberry variant (myb10 mutant) resulted in appealing pink-colored fruits, suggesting the diverse roles of ANR in fruit color regulation. Our study provides valuable theoretical insights for improving strawberry fruit color.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-024-00106-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Fruit color substantially affects consumer preferences, with darker red strawberries being economically more valuable due to their higher anthocyanin content. However, the molecular basis for the dark red coloration remains unclear. Through screening of an ethyl methanesulfonate mutant library, we identified a rg418 mutant, that demonstrated anthocyanin accumulation during early fruit development stages. Furthermore, the ripening fruits of this mutant had higher anthocyanin content than wild-type (WT) fruits. An analysis of flavonoid content in WT and rg418 mutant fruits revealed substantial changes in metabolic fluxes, with the mutant exhibiting increased levels of anthocyanins and flavonols and decreased levels of proanthocyanidins. Bulked sergeant analysis sequencing indicated that the mutant gene was anthocyanidin reductase (ANR), a key gene in the proanthocyanidin synthesis pathway. Furthermore, transcriptome sequencing revealed the increased expression of MYB105 during the early development stage of mutant fruits, which promoted the expression of UFGT (UDP-glucose flavonoid 3-O-glucosyltransferase), a key gene involved in anthocyanin synthesis, thus substantially enhancing the anthocyanin content in the mutant fruits. Additionally, mutating ANR in a white-fruited strawberry variant (myb10 mutant) resulted in appealing pink-colored fruits, suggesting the diverse roles of ANR in fruit color regulation. Our study provides valuable theoretical insights for improving strawberry fruit color.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.