Liuzi Zhang, Huihui Tao, Jianting Zhang, Yuyan An, Liangju Wang
{"title":"5-Aminolevulinic acid activates the MdWRKY71-MdMADS1 module to enhance anthocyanin biosynthesis in apple.","authors":"Liuzi Zhang, Huihui Tao, Jianting Zhang, Yuyan An, Liangju Wang","doi":"10.1186/s43897-024-00127-x","DOIUrl":null,"url":null,"abstract":"<p><p>5-Aminolevulinic acid (ALA), as a natural plant growth regulator, is well known for promoting red fruit coloring by enhancing anthocyanin accumulation. However, the underlying mechanisms remain elusive. In this study, we firstly demonstrated that ALA upregulates gene expression of the transcription factor MdMADS1, which in turn directly binds to and activates transcription of the key anthocyanin biosynthetic genes, MdCHS and MdUFGT. Then, we identified a novel WRKY transcription factor, MdWRKY71, that interacts with MdMADS1. Through gene manipulation, we revealed that MdWRKY71 plays a pivotal role in ALA-induced anthocyanin accumulation, highlighting its regulatory significance in this process. Further investigation unveiled that MdWRKY71 not only activates MdMADS1 transcription but also enhances its transcriptional activation on its target genes, MdCHS and MdUFGT. Additionally, we discovered that MdWRKY71 independently binds to and activates the transcription of two other anthocyanin biosynthetic genes, MdANS and MdDFR. The protein-protein interaction between MdWRKY71 and MdMADS1 amplifies the transcriptional activation of these genes by MdWRKY71. These findings delineate a fine and complex regulatory framework where MdWRKY71 and MdMADS1 coordinately regulate anthocyanin biosynthesis in apples, providing new insights into the molecular control of fruit coloration and offering potential target genes for breeding aimed at enhancing fruit quality.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"10"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-024-00127-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
5-Aminolevulinic acid (ALA), as a natural plant growth regulator, is well known for promoting red fruit coloring by enhancing anthocyanin accumulation. However, the underlying mechanisms remain elusive. In this study, we firstly demonstrated that ALA upregulates gene expression of the transcription factor MdMADS1, which in turn directly binds to and activates transcription of the key anthocyanin biosynthetic genes, MdCHS and MdUFGT. Then, we identified a novel WRKY transcription factor, MdWRKY71, that interacts with MdMADS1. Through gene manipulation, we revealed that MdWRKY71 plays a pivotal role in ALA-induced anthocyanin accumulation, highlighting its regulatory significance in this process. Further investigation unveiled that MdWRKY71 not only activates MdMADS1 transcription but also enhances its transcriptional activation on its target genes, MdCHS and MdUFGT. Additionally, we discovered that MdWRKY71 independently binds to and activates the transcription of two other anthocyanin biosynthetic genes, MdANS and MdDFR. The protein-protein interaction between MdWRKY71 and MdMADS1 amplifies the transcriptional activation of these genes by MdWRKY71. These findings delineate a fine and complex regulatory framework where MdWRKY71 and MdMADS1 coordinately regulate anthocyanin biosynthesis in apples, providing new insights into the molecular control of fruit coloration and offering potential target genes for breeding aimed at enhancing fruit quality.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.