Explainable federated learning scheme for secure healthcare data sharing.

IF 4.7 3区 医学 Q1 MEDICAL INFORMATICS Health Information Science and Systems Pub Date : 2024-09-13 eCollection Date: 2024-12-01 DOI:10.1007/s13755-024-00306-6
Liutao Zhao, Haoran Xie, Lin Zhong, Yujue Wang
{"title":"Explainable federated learning scheme for secure healthcare data sharing.","authors":"Liutao Zhao, Haoran Xie, Lin Zhong, Yujue Wang","doi":"10.1007/s13755-024-00306-6","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence has immense potential for applications in smart healthcare. Nowadays, a large amount of medical data collected by wearable or implantable devices has been accumulated in Body Area Networks. Unlocking the value of this data can better explore the applications of artificial intelligence in the smart healthcare field. To utilize these dispersed data, this paper proposes an innovative Federated Learning scheme, focusing on the challenges of explainability and security in smart healthcare. In the proposed scheme, the federated modeling process and explainability analysis are independent of each other. By introducing post-hoc explanation techniques to analyze the global model, the scheme avoids the performance degradation caused by pursuing explainability while understanding the mechanism of the model. In terms of security, firstly, a fair and efficient client private gradient evaluation method is introduced for explainable evaluation of gradient contributions, quantifying client contributions in federated learning and filtering the impact of low-quality data. Secondly, to address the privacy issues of medical health data collected by wireless Body Area Networks, a multi-server model is proposed to solve the secure aggregation problem in federated learning. Furthermore, by employing homomorphic secret sharing and homomorphic hashing techniques, a non-interactive, verifiable secure aggregation protocol is proposed, ensuring that client data privacy is protected and the correctness of the aggregation results is maintained even in the presence of up to <i>t</i> colluding malicious servers. Experimental results demonstrate that the proposed scheme's explainability is consistent with that of centralized training scenarios and shows competitive performance in terms of security and efficiency.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00306-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence has immense potential for applications in smart healthcare. Nowadays, a large amount of medical data collected by wearable or implantable devices has been accumulated in Body Area Networks. Unlocking the value of this data can better explore the applications of artificial intelligence in the smart healthcare field. To utilize these dispersed data, this paper proposes an innovative Federated Learning scheme, focusing on the challenges of explainability and security in smart healthcare. In the proposed scheme, the federated modeling process and explainability analysis are independent of each other. By introducing post-hoc explanation techniques to analyze the global model, the scheme avoids the performance degradation caused by pursuing explainability while understanding the mechanism of the model. In terms of security, firstly, a fair and efficient client private gradient evaluation method is introduced for explainable evaluation of gradient contributions, quantifying client contributions in federated learning and filtering the impact of low-quality data. Secondly, to address the privacy issues of medical health data collected by wireless Body Area Networks, a multi-server model is proposed to solve the secure aggregation problem in federated learning. Furthermore, by employing homomorphic secret sharing and homomorphic hashing techniques, a non-interactive, verifiable secure aggregation protocol is proposed, ensuring that client data privacy is protected and the correctness of the aggregation results is maintained even in the presence of up to t colluding malicious servers. Experimental results demonstrate that the proposed scheme's explainability is consistent with that of centralized training scenarios and shows competitive performance in terms of security and efficiency.

Graphical abstract:

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于安全共享医疗数据的可解释联合学习方案。
人工智能在智能医疗领域的应用潜力巨大。如今,由可穿戴或植入式设备收集的大量医疗数据已在体域网络中积累起来。挖掘这些数据的价值可以更好地探索人工智能在智能医疗领域的应用。为了利用这些分散的数据,本文提出了一种创新的联盟学习方案,重点关注智能医疗领域中可解释性和安全性的挑战。在所提出的方案中,联合建模过程和可解释性分析是相互独立的。通过引入事后解释技术来分析全局模型,该方案避免了在理解模型机制的同时追求可解释性而导致的性能下降。在安全性方面,首先,针对梯度贡献的可解释性评估,引入了一种公平高效的客户端私有梯度评估方法,量化了联合学习中的客户端贡献,过滤了低质量数据的影响。其次,针对无线体域网收集的医疗健康数据的隐私问题,提出了一种多服务器模型,以解决联合学习中的安全聚合问题。此外,通过采用同态秘密共享和同态散列技术,提出了一种非交互式、可验证的安全聚合协议,确保客户端数据隐私得到保护,即使存在多达 t 个恶意串通的服务器,也能保持聚合结果的正确性。实验结果表明,所提方案的可解释性与集中式训练方案一致,并在安全性和效率方面表现出了竞争力:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
5.00%
发文量
30
期刊介绍: Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.
期刊最新文献
Explainable federated learning scheme for secure healthcare data sharing. Comorbidity progression analysis: patient stratification and comorbidity prediction using temporal comorbidity network. Explainable depression symptom detection in social media. A lightweight network based on multi-feature pseudo-color mapping for arrhythmia recognition. Tree hole rescue: an AI approach for suicide risk detection and online suicide intervention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1