Engineering stress as a motivation for filamentous virus morphology.

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2024-09-10 DOI:10.1016/j.bpr.2024.100181
Andrew McMahon, Swetha Vijayakrishnan, Hafez El Sayyed, Danielle Groves, Michaela J Conley, Edward Hutchinson, Nicole C Robb
{"title":"Engineering stress as a motivation for filamentous virus morphology.","authors":"Andrew McMahon, Swetha Vijayakrishnan, Hafez El Sayyed, Danielle Groves, Michaela J Conley, Edward Hutchinson, Nicole C Robb","doi":"10.1016/j.bpr.2024.100181","DOIUrl":null,"url":null,"abstract":"<p><p>Many viruses are pleomorphic in shape and size, with pleomorphism often thought to correlate with infectivity, pathogenicity, or virus survival. For example, influenza and respiratory syncytial virus particles range in size from small spherical virions to filaments reaching many micrometers in length. We have used a pressure vessel model to investigate how the length and width of spherical and filamentous virions can vary for a given critical stress and fluorescence super-resolution microscopy along with image analysis tools to fit imaged influenza viruses to the model. We have shown that influenza virion dimensions fit within the theoretical limits of the model, suggesting that filament formation may be a way to increase an individual virus's volume without particle rupture. We have also used cryoelectron microscopy to investigate influenza and respiratory syncytial virus dimensions at the extrema of the model and used the pressure vessel model to explain the lack of alternative virus particle geometries. Our approach offers insight into the possible purpose of filamentous virus morphology and is applicable to a wide range of other biological entities, including bacteria and fungi.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2024.100181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Many viruses are pleomorphic in shape and size, with pleomorphism often thought to correlate with infectivity, pathogenicity, or virus survival. For example, influenza and respiratory syncytial virus particles range in size from small spherical virions to filaments reaching many micrometers in length. We have used a pressure vessel model to investigate how the length and width of spherical and filamentous virions can vary for a given critical stress and fluorescence super-resolution microscopy along with image analysis tools to fit imaged influenza viruses to the model. We have shown that influenza virion dimensions fit within the theoretical limits of the model, suggesting that filament formation may be a way to increase an individual virus's volume without particle rupture. We have also used cryoelectron microscopy to investigate influenza and respiratory syncytial virus dimensions at the extrema of the model and used the pressure vessel model to explain the lack of alternative virus particle geometries. Our approach offers insight into the possible purpose of filamentous virus morphology and is applicable to a wide range of other biological entities, including bacteria and fungi.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将工程应力作为丝状病毒形态的动力。
许多病毒的形状和大小具有多形性,多形性通常被认为与病毒的感染性、致病性或存活率有关。例如,流感病毒和呼吸道合胞病毒颗粒的大小不一,有的呈小球形,有的呈长达数微米的丝状。我们使用压力容器模型来研究在给定临界压力下球形和丝状病毒的长度和宽度如何变化,并使用荧光超分辨显微镜和图像分析工具将成像的流感病毒与模型相匹配。我们的研究表明,流感病毒的尺寸符合模型的理论限制,这表明病毒丝的形成可能是增加单个病毒体积而不导致颗粒破裂的一种方法。我们还利用低温电子显微镜研究了流感病毒和呼吸道合胞病毒在模型极值处的尺寸,并利用压力容器模型解释了病毒粒子几何形状缺乏替代性的原因。我们的方法有助于深入了解丝状病毒形态的可能目的,并适用于包括细菌和真菌在内的其他多种生物实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Development of a digital amplifier system for cut-open oocyte electrophysiology. Structural studies of the human α1 glycine receptor via site-specific chemical cross-linking coupled with mass spectrometry. Expression level of cardiac ryanodine receptors dictates properties of Ca2+-induced Ca2+ release. Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1