Andrew McMahon, Swetha Vijayakrishnan, Hafez El Sayyed, Danielle Groves, Michaela J Conley, Edward Hutchinson, Nicole C Robb
{"title":"Engineering stress as a motivation for filamentous virus morphology.","authors":"Andrew McMahon, Swetha Vijayakrishnan, Hafez El Sayyed, Danielle Groves, Michaela J Conley, Edward Hutchinson, Nicole C Robb","doi":"10.1016/j.bpr.2024.100181","DOIUrl":null,"url":null,"abstract":"<p><p>Many viruses are pleomorphic in shape and size, with pleomorphism often thought to correlate with infectivity, pathogenicity, or virus survival. For example, influenza and respiratory syncytial virus particles range in size from small spherical virions to filaments reaching many micrometers in length. We have used a pressure vessel model to investigate how the length and width of spherical and filamentous virions can vary for a given critical stress and fluorescence super-resolution microscopy along with image analysis tools to fit imaged influenza viruses to the model. We have shown that influenza virion dimensions fit within the theoretical limits of the model, suggesting that filament formation may be a way to increase an individual virus's volume without particle rupture. We have also used cryoelectron microscopy to investigate influenza and respiratory syncytial virus dimensions at the extrema of the model and used the pressure vessel model to explain the lack of alternative virus particle geometries. Our approach offers insight into the possible purpose of filamentous virus morphology and is applicable to a wide range of other biological entities, including bacteria and fungi.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2024.100181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Many viruses are pleomorphic in shape and size, with pleomorphism often thought to correlate with infectivity, pathogenicity, or virus survival. For example, influenza and respiratory syncytial virus particles range in size from small spherical virions to filaments reaching many micrometers in length. We have used a pressure vessel model to investigate how the length and width of spherical and filamentous virions can vary for a given critical stress and fluorescence super-resolution microscopy along with image analysis tools to fit imaged influenza viruses to the model. We have shown that influenza virion dimensions fit within the theoretical limits of the model, suggesting that filament formation may be a way to increase an individual virus's volume without particle rupture. We have also used cryoelectron microscopy to investigate influenza and respiratory syncytial virus dimensions at the extrema of the model and used the pressure vessel model to explain the lack of alternative virus particle geometries. Our approach offers insight into the possible purpose of filamentous virus morphology and is applicable to a wide range of other biological entities, including bacteria and fungi.