Dorsa EPMoghaddam, Anton Banta, Allison Post, Mehdi Razavi, Behnaam Aazhang
{"title":"A novel method for 12-lead ECG reconstruction.","authors":"Dorsa EPMoghaddam, Anton Banta, Allison Post, Mehdi Razavi, Behnaam Aazhang","doi":"10.1109/ieeeconf59524.2023.10476822","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel approach to synthesize a standard 12-lead electrocardiogram (ECG) from any three independent ECG leads using a patient-specific encoder-decoder convolutional neural network. The objective is to decrease the number of recording locations required to obtain the same information as a 12-lead ECG, thereby enhancing patients' comfort during the recording process. We evaluate the proposed algorithm on a dataset comprising fifteen patients, as well as a randomly selected cohort of patients from the PTB diagnostic database. To evaluate the precision of the reconstructed ECG signals, we present two metrics: the correlation coefficient and root mean square error. Our proposed method achieves superior performance compared to most existing synthesis techniques, with an average correlation coefficient of 0.976 and 0.97 for datasets, respectively. These results demonstrate the potential of our approach to improve the efficiency and comfort of ECG recording for patients, while maintaining high diagnostic accuracy.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2023 ","pages":"1054-1058"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieeeconf59524.2023.10476822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel approach to synthesize a standard 12-lead electrocardiogram (ECG) from any three independent ECG leads using a patient-specific encoder-decoder convolutional neural network. The objective is to decrease the number of recording locations required to obtain the same information as a 12-lead ECG, thereby enhancing patients' comfort during the recording process. We evaluate the proposed algorithm on a dataset comprising fifteen patients, as well as a randomly selected cohort of patients from the PTB diagnostic database. To evaluate the precision of the reconstructed ECG signals, we present two metrics: the correlation coefficient and root mean square error. Our proposed method achieves superior performance compared to most existing synthesis techniques, with an average correlation coefficient of 0.976 and 0.97 for datasets, respectively. These results demonstrate the potential of our approach to improve the efficiency and comfort of ECG recording for patients, while maintaining high diagnostic accuracy.