Generalization of CNNs on Relational Reasoning With Bar Charts.

Zhenxing Cui, Lu Chen, Yunhai Wang, Daniel Haehn, Yong Wang, Hanspeter Pfister
{"title":"Generalization of CNNs on Relational Reasoning With Bar Charts.","authors":"Zhenxing Cui, Lu Chen, Yunhai Wang, Daniel Haehn, Yong Wang, Hanspeter Pfister","doi":"10.1109/TVCG.2024.3463800","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3463800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用条形图进行关系推理的 CNN 通用化。
本文系统研究了卷积神经网络(CNN)和人类在条形图关系推理任务中的泛化能力。我们首先重温了以前的图形感知实验,并更新了 CNN 的基准性能。然后,我们在一个经典的关系推理任务上测试了 CNN 的泛化性能:通过逐步扰动标准可视化,估计条形图中的条形长度比。我们还进行了一项用户研究,以比较 CNN 和人类的性能。我们的结果表明,只有当训练数据和测试数据具有相同的视觉编码时,CNN 的表现才会优于人类。否则,它们的表现可能会更差。我们还发现,CNN 对各种视觉编码的扰动非常敏感,无论这些扰动与目标条形图是否相关。然而,人类主要受到条形图长度的影响。我们的研究表明,利用可视化进行稳健的关系推理对 CNN 来说具有挑战性。要提高 CNN 的泛化性能,可能需要对其进行训练,使其更好地识别与任务相关的视觉属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"where Did My Apps Go?" Supporting Scalable and Transition-Aware Access to Everyday Applications in Head-Worn Augmented Reality. PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction. From Dashboard Zoo to Census: A Case Study With Tableau Public. Authoring Data-Driven Chart Animations. Super-NeRF: View-consistent Detail Generation for NeRF Super-resolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1