Efficient Simulation of Viral Transduction and Propagation for Biomanufacturing.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-09-24 DOI:10.1021/acssynbio.4c00227
Francesco Destro, Richard D Braatz
{"title":"Efficient Simulation of Viral Transduction and Propagation for Biomanufacturing.","authors":"Francesco Destro, Richard D Braatz","doi":"10.1021/acssynbio.4c00227","DOIUrl":null,"url":null,"abstract":"<p><p>The design of biomanufacturing platforms based on viral transduction and/or propagation poses significant challenges at the intersection between synthetic biology and process engineering. This paper introduces vitraPro, a software toolkit composed of a multiscale model and an efficient numeric technique that can be leveraged for determining genetic and process designs that optimize transduction-based biomanufacturing platforms and viral amplification processes. Viral infection and propagation for up to two viruses simultaneously can be simulated through the model, considering viruses in either the lytic or lysogenic stage, during batch, perfusion, or continuous operation. The model estimates the distribution of the viral genome(s) copy number in the cell population, which is an indicator of transduction efficiency and viral genome stability. The infection age distribution of the infected cells is also calculated, indicating how many cells are in an infection stage compatible with recombinant product expression or viral amplification. The model can also consider the presence of defective interfering particles in the system, which can severely compromise the productivity of biomanufacturing processes. Model benchmarking and validation are demonstrated for case studies of the baculovirus expression vector system and influenza A propagation in suspension cultures.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00227","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The design of biomanufacturing platforms based on viral transduction and/or propagation poses significant challenges at the intersection between synthetic biology and process engineering. This paper introduces vitraPro, a software toolkit composed of a multiscale model and an efficient numeric technique that can be leveraged for determining genetic and process designs that optimize transduction-based biomanufacturing platforms and viral amplification processes. Viral infection and propagation for up to two viruses simultaneously can be simulated through the model, considering viruses in either the lytic or lysogenic stage, during batch, perfusion, or continuous operation. The model estimates the distribution of the viral genome(s) copy number in the cell population, which is an indicator of transduction efficiency and viral genome stability. The infection age distribution of the infected cells is also calculated, indicating how many cells are in an infection stage compatible with recombinant product expression or viral amplification. The model can also consider the presence of defective interfering particles in the system, which can severely compromise the productivity of biomanufacturing processes. Model benchmarking and validation are demonstrated for case studies of the baculovirus expression vector system and influenza A propagation in suspension cultures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效模拟生物制造中的病毒转导和传播。
基于病毒转导和/或传播的生物制造平台的设计在合成生物学和工艺工程学的交叉领域提出了重大挑战。本文介绍了由多尺度模型和高效数值技术组成的软件工具包 vitraPro,该工具包可用于确定基因和工艺设计,从而优化基于转导的生物制造平台和病毒扩增工艺。该模型可同时模拟多达两种病毒的感染和繁殖,并考虑病毒在批量、灌流或连续操作过程中的溶解或溶原阶段。该模型可估算病毒基因组拷贝数在细胞群中的分布,这是转导效率和病毒基因组稳定性的指标。还能计算受感染细胞的感染年龄分布,显示有多少细胞处于与重组产物表达或病毒扩增相适应的感染阶段。该模型还可以考虑系统中存在的有缺陷的干扰粒子,这些粒子会严重影响生物制造过程的生产率。针对杆状病毒表达载体系统和甲型流感在悬浮培养物中繁殖的案例研究,演示了模型基准和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Efficient Simulation of Viral Transduction and Propagation for Biomanufacturing. Impact of Chromatin Organization and Epigenetics on CRISPR-Cas and TALEN Genome Editing. Construction of Whole Cell Bacterial Biosensors as an Alternative Environmental Monitoring Technology to Detect Naphthenic Acids in Oil Sands Process-Affected Water. Design and Characterization of a Transcriptional Repression Toolkit for Plants. Implementing Optogenetic-Controlled Bacterial Systems in Drosophila melanogaster for Alleviation of Heavy Metal Poisoning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1