Oxygen Self-Doping Bi2S3@C Spheric Successfully Enhanced Long-Term Performance in Lithium-Ion Batteries.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-24 DOI:10.1021/acsami.4c11172
Xiaojing Zhang, Jing Xie, Yakun Tang, Zhenjiang Lu, Jindou Hu, Yang Wang, Yali Cao
{"title":"Oxygen Self-Doping Bi<sub>2</sub>S<sub>3</sub>@C Spheric Successfully Enhanced Long-Term Performance in Lithium-Ion Batteries.","authors":"Xiaojing Zhang, Jing Xie, Yakun Tang, Zhenjiang Lu, Jindou Hu, Yang Wang, Yali Cao","doi":"10.1021/acsami.4c11172","DOIUrl":null,"url":null,"abstract":"<p><p>High theoretical capacity of Bi<sub>2</sub>S<sub>3</sub> propels it toward an ideal anode material for lithium-ion batteries (LIBs); however, rapid capacity attenuation and poor long-term stability are major barriers to widespread application. In this work, an oxygen self-doping strategy was utilized to synthesize O-Bi<sub>2</sub>S<sub>3</sub>@C, significantly increasing the amount of active sites for lithium-ion storage. Meanwhile, sulfur vacancies were formed to improve the electrical conductivity and ionic transport efficiency, enhance the long-term stability, and accelerate the electrochemical kinetics of Bi<sub>2</sub>S<sub>3</sub>@C. O-BSC-S1:3 anode exhibits a reversible capacity of 673.1 mAh g<sup>-1</sup> at 0.2 A g<sup>-1</sup>. It retains a long-term capacity of 596.3 mAh g<sup>-1</sup> over 1100 cycles at a high density of 3 A g<sup>-1</sup> in LIBs. Moreover, the installed O-Bi<sub>2</sub>S<sub>3</sub>@C//LiCoO<sub>2</sub> full battery offers exceptional reversible capacity and remarkable cyclability (325.2 mAh g<sup>-1</sup> after 200 cycles) at 0.2 A g<sup>-1</sup>. The combined strategy of oxygen self-doping and sulfur vacancy effectively enhances the reversible capacity and cycling life of Bi<sub>2</sub>S<sub>3</sub>, providing an approach for the design of high-performance transition metal sulfide anodes for LIBs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11172","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High theoretical capacity of Bi2S3 propels it toward an ideal anode material for lithium-ion batteries (LIBs); however, rapid capacity attenuation and poor long-term stability are major barriers to widespread application. In this work, an oxygen self-doping strategy was utilized to synthesize O-Bi2S3@C, significantly increasing the amount of active sites for lithium-ion storage. Meanwhile, sulfur vacancies were formed to improve the electrical conductivity and ionic transport efficiency, enhance the long-term stability, and accelerate the electrochemical kinetics of Bi2S3@C. O-BSC-S1:3 anode exhibits a reversible capacity of 673.1 mAh g-1 at 0.2 A g-1. It retains a long-term capacity of 596.3 mAh g-1 over 1100 cycles at a high density of 3 A g-1 in LIBs. Moreover, the installed O-Bi2S3@C//LiCoO2 full battery offers exceptional reversible capacity and remarkable cyclability (325.2 mAh g-1 after 200 cycles) at 0.2 A g-1. The combined strategy of oxygen self-doping and sulfur vacancy effectively enhances the reversible capacity and cycling life of Bi2S3, providing an approach for the design of high-performance transition metal sulfide anodes for LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧自掺杂 Bi2S3@C Spheric 成功提高了锂离子电池的长期性能。
Bi2S3 的高理论容量使其成为锂离子电池(LIB)的理想负极材料;然而,容量快速衰减和长期稳定性差是其广泛应用的主要障碍。在这项工作中,利用氧自掺杂策略合成了 O-Bi2S3@C,大大增加了锂离子存储的活性位点数量。同时,硫空位的形成提高了 Bi2S3@C 的导电性和离子传输效率,增强了其长期稳定性,并加速了其电化学动力学过程。O-BSC-S1:3 阳极在 0.2 A g-1 的条件下显示出 673.1 mAh g-1 的可逆容量。在 3 A g-1 的高密度锂电池中,经过 1100 次循环后,它仍能保持 596.3 mAh g-1 的长期容量。此外,已安装的 O-Bi2S3@C//LiCoO2 全电池在 0.2 A g-1 的条件下具有优异的可逆容量和显著的循环能力(200 次循环后为 325.2 mAh g-1)。氧自掺杂和硫空位相结合的策略有效地提高了 Bi2S3 的可逆容量和循环寿命,为设计用于 LIB 的高性能过渡金属硫化物阳极提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Development of a Highly Sensitive and Stretchable Charge-Transfer Fiber Strain Sensor for Wearable Applications Transient Phase-Mediated Li+ Transportation in the Lithium Lanthanum Titanate Solid-State Electrolyte Manipulation of Zn Deposition Behavior to Achieve High-Rate Aqueous Zinc Batteries via High Valence Zirconium Ions Thermodynamically and Dynamically Boosted Electrocatalytic Iodine Conversion with Hydroxyl Groups for High-Efficiency Zinc–Iodine Batteries Controlled Vapor–Liquid–Solid Growth of Long and Remarkably Thin Pb1–xSnxTe Nanowires with Strain-Tunable Ferroelectric Phase Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1