Transient Phase-Mediated Li+ Transportation in the Lithium Lanthanum Titanate Solid-State Electrolyte

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-28 DOI:10.1021/acsami.4c10641
Yuxin Qiu, Yao Nian, Yonghui Ma, Lei Xu, Yubing Hu, Jian Song, Langli Luo, You Han, Lifeng Zhang
{"title":"Transient Phase-Mediated Li+ Transportation in the Lithium Lanthanum Titanate Solid-State Electrolyte","authors":"Yuxin Qiu, Yao Nian, Yonghui Ma, Lei Xu, Yubing Hu, Jian Song, Langli Luo, You Han, Lifeng Zhang","doi":"10.1021/acsami.4c10641","DOIUrl":null,"url":null,"abstract":"The lithium lanthanum titanium oxide (LLTO) perovskite is one type of superior lithium (Li)-ion conductor that is of great interest as a solid-state electrolyte for all-solid-state lithium batteries. Structural defects and impurity phases formed during the synthesis of LLTO largely affect its Li-ion conductivity, yet the underlying Li<sup>+</sup> diffusion mechanism at the atomic scale is still under scrutiny. Herein, we use aberration-corrected transmission electron microscopy to perform a thorough structural characterization of the LLTO ceramic pellet. We reveal a prevalent transient phase transition of (La, Ti)<sub>2</sub>O<sub>3</sub> existing at the antiphase boundaries between single-crystalline LLTO domains. This transient phase exhibits a specific crystal orientation with the LLTO phase and shows a gradual structural transition to a tetragonal LLTO structure, which enables detailed crystallographic analysis to correlate their formation to the sintering process of LLTO powders into ceramic pellets. We also find that Li diffusion is retarded by this phase and correlated with the excess amount of La, which is corroborated by the theoretical evaluation of the atomistic mechanisms of Li diffusion across this phase.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c10641","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The lithium lanthanum titanium oxide (LLTO) perovskite is one type of superior lithium (Li)-ion conductor that is of great interest as a solid-state electrolyte for all-solid-state lithium batteries. Structural defects and impurity phases formed during the synthesis of LLTO largely affect its Li-ion conductivity, yet the underlying Li+ diffusion mechanism at the atomic scale is still under scrutiny. Herein, we use aberration-corrected transmission electron microscopy to perform a thorough structural characterization of the LLTO ceramic pellet. We reveal a prevalent transient phase transition of (La, Ti)2O3 existing at the antiphase boundaries between single-crystalline LLTO domains. This transient phase exhibits a specific crystal orientation with the LLTO phase and shows a gradual structural transition to a tetragonal LLTO structure, which enables detailed crystallographic analysis to correlate their formation to the sintering process of LLTO powders into ceramic pellets. We also find that Li diffusion is retarded by this phase and correlated with the excess amount of La, which is corroborated by the theoretical evaluation of the atomistic mechanisms of Li diffusion across this phase.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钛酸镧锂固态电解质中瞬态相位介导的 Li+ 迁移
锂镧钛氧化物(LLTO)是一种优异的锂(Li)离子导体,作为全固态锂电池的固态电解质备受关注。LLTO 合成过程中形成的结构缺陷和杂质相在很大程度上影响了其锂离子传导性,但其原子尺度上的锂+扩散机制仍在研究之中。在此,我们使用像差校正透射电子显微镜对 LLTO 陶瓷颗粒进行了全面的结构表征。我们发现在 LLTO 单晶畴之间的反相边界存在着一种普遍的 (La, Ti)2O3 瞬态相变。这种瞬变相与 LLTO 相具有特定的晶体取向,并逐渐过渡到四方 LLTO 结构,因此可以通过详细的晶体学分析将其形成与 LLTO 粉末烧结成陶瓷颗粒的过程联系起来。我们还发现,锂的扩散受到该相的阻碍,并与过量的 La 相关,这一点在对锂在该相间扩散的原子论机制的理论评估中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Predictors of Inflammation-Mediated Preterm Birth. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery. Role of RANKL Signaling in Bone Homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1