{"title":"Structure of Multi-State Correlation in Electronic Systems.","authors":"Yangyi Lu, Jiali Gao","doi":"10.1021/acs.jctc.4c00545","DOIUrl":null,"url":null,"abstract":"<p><p>Beyond the Hohenberg-Kohn density functional theory for the ground state, it has been established that the Hamiltonian matrix for a finite number (<i>N</i>) of lowest eigenstates is a matrix density functional. Its fundamental variable─the matrix density <b>D</b>(<i>r</i>)─can be represented by, or mapped to, a set of auxiliary, multiconfigurational wave functions expressed as a linear combination of no more than <i>N</i><sup>2</sup> determinant configurations. The latter defines a minimal active space (MAS), which naturally leads to the introduction of the correlation matrix functional, responsible for the electronic correlation effects outside the MAS. In this study, we report a set of rigorous conditions in the Hamiltonian matrix functional, derived by enforcing the symmetry of a Hilbert subspace, namely the subspace invariance property. We further establish a fundamental theorem on the correlation matrix functional. That is, given the correlation functional for a single state in the <i>N</i>-dimensional subspace, all elements of the correlation matrix functional for the entire subspace are uniquely determined. These findings reveal the intricate structure of electronic correlation within the Hilbert subspace of lowest eigenstates and suggest a promising direction for efficient simulation of excited states.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00545","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Beyond the Hohenberg-Kohn density functional theory for the ground state, it has been established that the Hamiltonian matrix for a finite number (N) of lowest eigenstates is a matrix density functional. Its fundamental variable─the matrix density D(r)─can be represented by, or mapped to, a set of auxiliary, multiconfigurational wave functions expressed as a linear combination of no more than N2 determinant configurations. The latter defines a minimal active space (MAS), which naturally leads to the introduction of the correlation matrix functional, responsible for the electronic correlation effects outside the MAS. In this study, we report a set of rigorous conditions in the Hamiltonian matrix functional, derived by enforcing the symmetry of a Hilbert subspace, namely the subspace invariance property. We further establish a fundamental theorem on the correlation matrix functional. That is, given the correlation functional for a single state in the N-dimensional subspace, all elements of the correlation matrix functional for the entire subspace are uniquely determined. These findings reveal the intricate structure of electronic correlation within the Hilbert subspace of lowest eigenstates and suggest a promising direction for efficient simulation of excited states.
除了基态的霍恩伯格-科恩密度泛函理论(Hohenberg-Kohn density functional theory)之外,已经确定有限数量(N)的最低特征态的哈密顿矩阵是一个矩阵密度泛函。它的基本变量--矩阵密度 D(r)- 可以用一组辅助的多构型波函数来表示,或映射为不超过 N2 个行列式构型的线性组合。后者定义了最小有源空间(MAS),自然会引入相关矩阵函数,负责 MAS 外的电子相关效应。在本研究中,我们报告了通过强制希尔伯特子空间的对称性(即子空间不变性属性)得出的哈密顿矩阵函数的一系列严格条件。我们进一步建立了相关矩阵函数的基本定理。也就是说,给定 N 维子空间中单个状态的相关函数,整个子空间的相关矩阵函数的所有元素都是唯一确定的。这些发现揭示了最低特征态希尔伯特子空间内错综复杂的电子相关结构,为高效模拟激发态指明了方向。
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.