Jalal Bayar, Nawab Ali, Younsuk Dong, Uzair Ahmad, Muhammad Mehran Anjum, Gul Roz Khan, Muhammad Zaib, Arshad Jalal, Rovaid Ali, Liaqat Ali
{"title":"Biochar-based adsorption for heavy metal removal in water: a sustainable and cost-effective approach.","authors":"Jalal Bayar, Nawab Ali, Younsuk Dong, Uzair Ahmad, Muhammad Mehran Anjum, Gul Roz Khan, Muhammad Zaib, Arshad Jalal, Rovaid Ali, Liaqat Ali","doi":"10.1007/s10653-024-02214-w","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing contamination of aquatic bodies by heavy metals poses a significant threat to environment and human health, necessitates innovative, sustainable and cost-effective remediation strategies. Due to their persistence and toxicity, heavy metals like copper (Cu), lead (Pb), mercury (Hg), and cadmium (Cd) pose severe threats, even in trace amounts. Traditional removal methods of these heavy metals, like chemical precipitation, oxidation/reduction, filtration, ion exchange, membrane separation, and adsorption, are costly, inefficient, and have drawbacks. As an efficient and low-cost adsorbent, biochar has the potential for heavy metal remediation from water. Biochar is a versatile carbonaceous material produced through pyrolysis of organic wastes, emerged as a powerful adsorbent for heavy metal removal from contaminated water. The unique property of biochar makes it an effective medium immobilizing and capturing of heavy metals like Pb, Cd, As and Hg. Various factors affect its adsorption potential and capacity. Feedstocks type, composition, activation methods, and production processes including the pyrolysis temperature, temperature rate and residence time significantly impact the efficacy of biochar. Therefore, this review has assessed, compared, and contrasted different forms of biochar along with their production methods, modification techniques and mechanisms for their potential use as an adsorbent for heavy metal removal from the contaminated water. Modified biochar offers an environmentally friendly and cost-effective solution for water purification and remediation of toxic heavy metals from water. This review highlights the biochar potential as a crucial component for future research projects focusing on water treatment technologies, providing avenues for safer and cleaner water resources.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"428"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02214-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing contamination of aquatic bodies by heavy metals poses a significant threat to environment and human health, necessitates innovative, sustainable and cost-effective remediation strategies. Due to their persistence and toxicity, heavy metals like copper (Cu), lead (Pb), mercury (Hg), and cadmium (Cd) pose severe threats, even in trace amounts. Traditional removal methods of these heavy metals, like chemical precipitation, oxidation/reduction, filtration, ion exchange, membrane separation, and adsorption, are costly, inefficient, and have drawbacks. As an efficient and low-cost adsorbent, biochar has the potential for heavy metal remediation from water. Biochar is a versatile carbonaceous material produced through pyrolysis of organic wastes, emerged as a powerful adsorbent for heavy metal removal from contaminated water. The unique property of biochar makes it an effective medium immobilizing and capturing of heavy metals like Pb, Cd, As and Hg. Various factors affect its adsorption potential and capacity. Feedstocks type, composition, activation methods, and production processes including the pyrolysis temperature, temperature rate and residence time significantly impact the efficacy of biochar. Therefore, this review has assessed, compared, and contrasted different forms of biochar along with their production methods, modification techniques and mechanisms for their potential use as an adsorbent for heavy metal removal from the contaminated water. Modified biochar offers an environmentally friendly and cost-effective solution for water purification and remediation of toxic heavy metals from water. This review highlights the biochar potential as a crucial component for future research projects focusing on water treatment technologies, providing avenues for safer and cleaner water resources.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.