Pramod K Rajak, P Gopinathan, Aniruddha Kumar, Om Prakash Kumar, Ishwar C Rahi, Anupam Sharma, Prakash K Singh, Amit Karmakar
{"title":"Geochemical and mineralogical assessment of environmentally sensitive elements in Neyveli lignite deposits, Cauvery Basin, India.","authors":"Pramod K Rajak, P Gopinathan, Aniruddha Kumar, Om Prakash Kumar, Ishwar C Rahi, Anupam Sharma, Prakash K Singh, Amit Karmakar","doi":"10.1007/s10653-024-02193-y","DOIUrl":null,"url":null,"abstract":"<p><p>This research work presents an examination of the concentrations and modes of occurrence of environmentally sensitive elements within lignite deposits, located in Neyveli, within the Cauvery Basin of India. Coal is one of the most complex geologically formed materials, consisting of organic and inorganic matter. The inorganic mineral matter including the crystalline minerals, non-crystalline mineraloids, and elements with non-mineral associations. These lignite samples underwent complete analysis encompassing macroscopic, microscopic and geochemical assessments. The analysis reveals that the total mineral matter (MM) content, comprising significant proportions of sulphides, carbonate and argillaceous components. Geochemical characterization further elucidates the lignite's properties, with proximate analysis yielding values such as ash, volatile matter and fixed carbon and the Ultimate components analysis reveals the carbon, hydrogen, nitrogen, sulphur and oxygen. Inorganic mineral matters play a significant role in coal utilization, and also such modes of occurrence of elements provide useful geochemical information on coal formation and coal-bearing basin evolution. In this paper, we assess the associations of elements and minerals, as well as the associations of selected elements including environmentally-sensitive (e.g., S, As, U, and Hg), and some major elements (e.g., Ca, Mg, Fe, Al, and Ti) that have largely occurred in non-mineral forms in these low-rank coals. And also, comparative analysis is conducted between the concentrations of elements within the lignite samples and the values reported for World Clarke Brown Coals (WCBC). Particularly, some of these elements exhibit significantly high environmental sensitivity, demanding careful consideration in lignite extraction and utilization practices.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"431"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02193-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research work presents an examination of the concentrations and modes of occurrence of environmentally sensitive elements within lignite deposits, located in Neyveli, within the Cauvery Basin of India. Coal is one of the most complex geologically formed materials, consisting of organic and inorganic matter. The inorganic mineral matter including the crystalline minerals, non-crystalline mineraloids, and elements with non-mineral associations. These lignite samples underwent complete analysis encompassing macroscopic, microscopic and geochemical assessments. The analysis reveals that the total mineral matter (MM) content, comprising significant proportions of sulphides, carbonate and argillaceous components. Geochemical characterization further elucidates the lignite's properties, with proximate analysis yielding values such as ash, volatile matter and fixed carbon and the Ultimate components analysis reveals the carbon, hydrogen, nitrogen, sulphur and oxygen. Inorganic mineral matters play a significant role in coal utilization, and also such modes of occurrence of elements provide useful geochemical information on coal formation and coal-bearing basin evolution. In this paper, we assess the associations of elements and minerals, as well as the associations of selected elements including environmentally-sensitive (e.g., S, As, U, and Hg), and some major elements (e.g., Ca, Mg, Fe, Al, and Ti) that have largely occurred in non-mineral forms in these low-rank coals. And also, comparative analysis is conducted between the concentrations of elements within the lignite samples and the values reported for World Clarke Brown Coals (WCBC). Particularly, some of these elements exhibit significantly high environmental sensitivity, demanding careful consideration in lignite extraction and utilization practices.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.