Yee Huang, Jiaying Sun, Xuemei Cui, Xuefeng Li, Zizhe Hu, Quanan Ji, Guolian Bao, Yan Liu
{"title":"Enhancing protective immunity against bacterial infection via coating nano-Rehmannia glutinosa polysaccharide with outer membrane vesicles","authors":"Yee Huang, Jiaying Sun, Xuemei Cui, Xuefeng Li, Zizhe Hu, Quanan Ji, Guolian Bao, Yan Liu","doi":"10.1002/jev2.12514","DOIUrl":null,"url":null,"abstract":"<p>With the coming of the post-antibiotic era, there is an increasingly urgent need for safe and efficient antibacterial vaccines. Bacterial outer membrane vesicles (OMVs) have received increased attention recently as a potential subunit vaccine. OMVs are non-replicative and contain the principle immunogenic bacterial antigen, which circumvents the safety concerns of live-attenuated vaccines. Here, we developed a novel nano-vaccine by coating OMVs onto PEGylated nano-<i>Rehmannia glutinosa</i> polysaccharide (pRL) in a structure consisting of concentric circles, resulting in a more stable vaccine with improved immunogenicity. The immunological function of the pRL-OMV formulation was evaluated in vivo and in vitro, and the underlying mechanism was studied though transcriptomic analysis. The pRL-OMV formulation significantly increased dendritic cell (DC) proliferation and cytokine secretion. Efficient phagocytosis of the formulation by DCs was accompanied by DC maturation. Further, the formulation demonstrated superior lymph node targeting, contributing to a potent mixed cellular response and bacterial-specific antibody response against <i>Bordetella bronchiseptica</i> infection. Specifically, transcriptomic analysis revealed that the immune protection function correlated with T-cell receptor signalling and Th1/Th2/Th17 differentiation, among other markers of enhanced immunological activity. These findings have implications for the future application of OMV-coated nano-carriers in antimicrobial immunotherapy.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 9","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12514","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12514","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the coming of the post-antibiotic era, there is an increasingly urgent need for safe and efficient antibacterial vaccines. Bacterial outer membrane vesicles (OMVs) have received increased attention recently as a potential subunit vaccine. OMVs are non-replicative and contain the principle immunogenic bacterial antigen, which circumvents the safety concerns of live-attenuated vaccines. Here, we developed a novel nano-vaccine by coating OMVs onto PEGylated nano-Rehmannia glutinosa polysaccharide (pRL) in a structure consisting of concentric circles, resulting in a more stable vaccine with improved immunogenicity. The immunological function of the pRL-OMV formulation was evaluated in vivo and in vitro, and the underlying mechanism was studied though transcriptomic analysis. The pRL-OMV formulation significantly increased dendritic cell (DC) proliferation and cytokine secretion. Efficient phagocytosis of the formulation by DCs was accompanied by DC maturation. Further, the formulation demonstrated superior lymph node targeting, contributing to a potent mixed cellular response and bacterial-specific antibody response against Bordetella bronchiseptica infection. Specifically, transcriptomic analysis revealed that the immune protection function correlated with T-cell receptor signalling and Th1/Th2/Th17 differentiation, among other markers of enhanced immunological activity. These findings have implications for the future application of OMV-coated nano-carriers in antimicrobial immunotherapy.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.