Macarena Díaz-Ubilla, Aliosha I. Figueroa-Valdés, Hugo E. Tobar, María Elena Quintanilla, Eugenio Díaz, Paola Morales, Pablo Berríos-Cárcamo, Daniela Santapau, Javiera Gallardo, Cristian de Gregorio, Juan Ugalde, Carolina Rojas, Antonia Gonzalez-Madrid, Marcelo Ezquer, Yedy Israel, Francisca Alcayaga-Miranda, Fernando Ezquer
{"title":"Gut Microbiota-Derived Extracellular Vesicles Influence Alcohol Intake Preferences in Rats","authors":"Macarena Díaz-Ubilla, Aliosha I. Figueroa-Valdés, Hugo E. Tobar, María Elena Quintanilla, Eugenio Díaz, Paola Morales, Pablo Berríos-Cárcamo, Daniela Santapau, Javiera Gallardo, Cristian de Gregorio, Juan Ugalde, Carolina Rojas, Antonia Gonzalez-Madrid, Marcelo Ezquer, Yedy Israel, Francisca Alcayaga-Miranda, Fernando Ezquer","doi":"10.1002/jev2.70059","DOIUrl":null,"url":null,"abstract":"<p>Growing preclinical and clinical evidence suggests a link between gut microbiota dysbiosis and problematic alcohol consumption. Extracellular vesicles (EVs) are key mediators involved in bacteria-to-host communication. However, their potential role in mediating addictive behaviour remains unexplored. This study investigates the role of gut microbiota-derived bacterial extracellular vesicles (bEVs) in driving high alcohol consumption. bEVs were isolated from the gut microbiota of a high alcohol-drinking rat strain (UChB rats), either ethanol-naïve or following chronic alcohol consumption and administered intraperitoneally or orally to alcohol-rejecting male and female Wistar rats. Both types of UChB-derived bEVs increased Wistar's voluntary alcohol consumption (three bottle choice test) up to 10-fold (<i>p</i> < 0.0001), indicating that bEVs are able and sufficient to transmit drinking behaviour across different rat strains. Molecular analysis revealed that bEVs administration did not induce systemic or brain inflammation in the recipient animals, suggesting that the increased alcohol intake triggered by UChB-derived bEVs operates through an inflammation-independent mechanism. Furthermore, we demonstrate that the vagus nerve mediates the bEV-induced increase in alcohol consumption, as bilateral vagotomy completely abolished the high drinking behaviour induced by both intraperitoneally injected and orally administered bEVs. Thus, this study identifies bEVs as a novel mechanism underlying gut microbiota-induced high alcohol intake in a vagus nerve-dependent manner.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 3","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70059","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Growing preclinical and clinical evidence suggests a link between gut microbiota dysbiosis and problematic alcohol consumption. Extracellular vesicles (EVs) are key mediators involved in bacteria-to-host communication. However, their potential role in mediating addictive behaviour remains unexplored. This study investigates the role of gut microbiota-derived bacterial extracellular vesicles (bEVs) in driving high alcohol consumption. bEVs were isolated from the gut microbiota of a high alcohol-drinking rat strain (UChB rats), either ethanol-naïve or following chronic alcohol consumption and administered intraperitoneally or orally to alcohol-rejecting male and female Wistar rats. Both types of UChB-derived bEVs increased Wistar's voluntary alcohol consumption (three bottle choice test) up to 10-fold (p < 0.0001), indicating that bEVs are able and sufficient to transmit drinking behaviour across different rat strains. Molecular analysis revealed that bEVs administration did not induce systemic or brain inflammation in the recipient animals, suggesting that the increased alcohol intake triggered by UChB-derived bEVs operates through an inflammation-independent mechanism. Furthermore, we demonstrate that the vagus nerve mediates the bEV-induced increase in alcohol consumption, as bilateral vagotomy completely abolished the high drinking behaviour induced by both intraperitoneally injected and orally administered bEVs. Thus, this study identifies bEVs as a novel mechanism underlying gut microbiota-induced high alcohol intake in a vagus nerve-dependent manner.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.