Improving the coverage area and flake size of ReS2through machine learning in APCVD.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-10-04 DOI:10.1088/1361-6528/ad7e2e
Mario Flores Salazar, Christian Mateo Frausto-Avila, Javier A de Jesús Bautista, Gowtham Polumati, Barbara A Muñiz Martínez, K Chandra Sekhar Reddy, Miguel Ángel Hernández-Vázquez, Elodie Strupiechonski, Parikshit Sahatiya, Mario Alan Quiroz-Juárez, Andres De Luna Bugallo
{"title":"Improving the coverage area and flake size of ReS<sub>2</sub>through machine learning in APCVD.","authors":"Mario Flores Salazar, Christian Mateo Frausto-Avila, Javier A de Jesús Bautista, Gowtham Polumati, Barbara A Muñiz Martínez, K Chandra Sekhar Reddy, Miguel Ángel Hernández-Vázquez, Elodie Strupiechonski, Parikshit Sahatiya, Mario Alan Quiroz-Juárez, Andres De Luna Bugallo","doi":"10.1088/1361-6528/ad7e2e","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning is playing a crucial role in optimizing material synthesis, particularly in scenarios where several parameters related to growth exhibit different and significant outcomes. An example of such complexity is the growth of atomically thin semiconductors through chemical vapor deposition (CVD), where multiple parameters can influence the thermodynamics and reaction kinetics involved in the synthesis. Herein, we performed a set of orthogonal experiments, varying the key parameters such as temperature, carries gas flux and precursor position to identify the optimal conditions for maximizing covered area and the size of rhenium disulfide (ReS<sub>2</sub>) crystals. The experimental results were used to establish correlations among the three thermodynamic variables through an artificial neural network. Contour plots were then generated to visualize the impact on the coverage and flake size of the crystals. This study demonstrates the capability of machine learning to enhance the potential of CVD-growth for the integration of 2D semiconductors like ReS<sub>2</sub>at larger scales.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad7e2e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning is playing a crucial role in optimizing material synthesis, particularly in scenarios where several parameters related to growth exhibit different and significant outcomes. An example of such complexity is the growth of atomically thin semiconductors through chemical vapor deposition (CVD), where multiple parameters can influence the thermodynamics and reaction kinetics involved in the synthesis. Herein, we performed a set of orthogonal experiments, varying the key parameters such as temperature, carries gas flux and precursor position to identify the optimal conditions for maximizing covered area and the size of rhenium disulfide (ReS2) crystals. The experimental results were used to establish correlations among the three thermodynamic variables through an artificial neural network. Contour plots were then generated to visualize the impact on the coverage and flake size of the crystals. This study demonstrates the capability of machine learning to enhance the potential of CVD-growth for the integration of 2D semiconductors like ReS2at larger scales.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 APCVD 中通过机器学习改进 ReS2 的覆盖面积和薄片尺寸。
机器学习在优化材料合成方面发挥着至关重要的作用,尤其是在与生长相关的多个参数表现出不同且重要结果的情况下。通过化学气相沉积(CVD)生长原子级薄半导体就是这种复杂性的一个例子,其中多个参数会影响合成过程中涉及的热力学和反应动力学。在此,我们进行了一系列正交实验,通过改变温度、载气通量和前驱体位置等关键参数,确定了使二硫化铼(ReS2)晶体的覆盖面积和尺寸最大化的最佳条件。实验结果通过人工神经网络建立了三个热力学变量之间的相关性。然后生成等高线图,以直观显示对晶体覆盖面积和薄片尺寸的影响。这项研究证明了机器学习的能力,可以提高 CVD 生长在更大规模上集成二维半导体(如 ReS2)的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
A cubic perovskite fluoride anode with the surface conversion reactions dominated mechanism for advanced lithium-ion batteries. A review on recent advances in g-C3N4-MXene nanocomposites for photocatalytic applications. Coherent random fiber laser emission from CdSe/ZnS quantum dots. Improving the coverage area and flake size of ReS2through machine learning in APCVD. Recent advances in scanning electrochemical microscopy for energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1