Arjun Pandey , James Hunt , James Murray , Kate Maddern , Xiaojuan Wang , Caixian Tang , Kate Finger
{"title":"A comparison of nitrogen fertiliser decision making systems to profitably close grain yield gaps in semi-arid environments","authors":"Arjun Pandey , James Hunt , James Murray , Kate Maddern , Xiaojuan Wang , Caixian Tang , Kate Finger","doi":"10.1016/j.fcr.2024.109576","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Nitrogen (N) deficiency is the single biggest cause of the yield gap in Australian wheat production. Nitrogen fertiliser is a costly input and prediction of crop seasonal demand for N in Australia’s variable climate is difficult, so farmers are conservative with investment in N fertiliser, leading to under-fertilisation and over reliance on soil organic N.</div></div><div><h3>Objective</h3><div>We evaluated the ability of different N decision-making systems to close yield gaps, reduce mining of soil organic N and minimise accumulation of soil nitrate.</div></div><div><h3>Methods</h3><div>A 5-year (2018–2022) field experiment was conducted in a rainfed Mediterranean environment at Curyo, Victoria in Australia with different N decision-making systems, namely N bank (NB) targets (100, 125 and 150 kg N ha<sup>−1</sup>), Yield Prophet® (YP) at different yield probabilities (25, 50, 75 and 100 %), annual Australian national average N rate (NA45, 45 kg N ha<sup>−1</sup>), replacement of N in exported grain (R) and a nil control, as treatments in a randomised complete block design with four replicates.</div></div><div><h3>Results</h3><div>After five years, YP25, YP50, YP75 and NB125 applied on average 49, 30, 4 and 18 kg ha<sup>−1</sup> more N per year than NA45, respectively, and achieved or exceeded economic yield (EY), i.e. 80 % of water-limited potential yield (PY<sub>w</sub>), as opposed to 72 % of PY<sub>w</sub> achieved in NA45. These systems also had a higher 5-year mean gross margin (AUD 469–550 ha<sup>−1</sup>) compared to the NA45 (AUD 401 ha<sup>−1</sup>). Positive 5-year partial N balance (total N input minus total N exported in grain over 5 years) was observed only in the YP25, YP50, NB150 and NB125 treatments (4–93 kg N ha<sup>−1</sup>). However, apart from NB125 these treatments had consistently higher soil mineral N levels to 1-m depth compared to NA45 and <2 marginal return:cost ratio. Also nitrate content at 0.7–1.0 m depth in the YP25 and NB150 treatments were consistently higher (<em>p</em> <0.05) than that in NA45.</div></div><div><h3>Conclusions</h3><div>Low soil nitrate level, achievement of EY and higher gross margin in the NB125 compared to NA45 makes it the N management system best suited for this environment. Additionally, the positive partial N balance (4 kg N ha<sup>−1</sup>) observed in the system suggests that it is less likely to mine soil organic N compared to NA45 (-39 kg ha<sup>−1</sup>).</div></div><div><h3>Significance</h3><div>Adoption by growers of the best performing systems should reduce grain yield gaps and reduce mining of soil organic N with no increased risk of environmental N loss.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109576"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378429024003290/pdfft?md5=1a8fd023d9116c6f3f72acefdb8731b7&pid=1-s2.0-S0378429024003290-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429024003290","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Nitrogen (N) deficiency is the single biggest cause of the yield gap in Australian wheat production. Nitrogen fertiliser is a costly input and prediction of crop seasonal demand for N in Australia’s variable climate is difficult, so farmers are conservative with investment in N fertiliser, leading to under-fertilisation and over reliance on soil organic N.
Objective
We evaluated the ability of different N decision-making systems to close yield gaps, reduce mining of soil organic N and minimise accumulation of soil nitrate.
Methods
A 5-year (2018–2022) field experiment was conducted in a rainfed Mediterranean environment at Curyo, Victoria in Australia with different N decision-making systems, namely N bank (NB) targets (100, 125 and 150 kg N ha−1), Yield Prophet® (YP) at different yield probabilities (25, 50, 75 and 100 %), annual Australian national average N rate (NA45, 45 kg N ha−1), replacement of N in exported grain (R) and a nil control, as treatments in a randomised complete block design with four replicates.
Results
After five years, YP25, YP50, YP75 and NB125 applied on average 49, 30, 4 and 18 kg ha−1 more N per year than NA45, respectively, and achieved or exceeded economic yield (EY), i.e. 80 % of water-limited potential yield (PYw), as opposed to 72 % of PYw achieved in NA45. These systems also had a higher 5-year mean gross margin (AUD 469–550 ha−1) compared to the NA45 (AUD 401 ha−1). Positive 5-year partial N balance (total N input minus total N exported in grain over 5 years) was observed only in the YP25, YP50, NB150 and NB125 treatments (4–93 kg N ha−1). However, apart from NB125 these treatments had consistently higher soil mineral N levels to 1-m depth compared to NA45 and <2 marginal return:cost ratio. Also nitrate content at 0.7–1.0 m depth in the YP25 and NB150 treatments were consistently higher (p <0.05) than that in NA45.
Conclusions
Low soil nitrate level, achievement of EY and higher gross margin in the NB125 compared to NA45 makes it the N management system best suited for this environment. Additionally, the positive partial N balance (4 kg N ha−1) observed in the system suggests that it is less likely to mine soil organic N compared to NA45 (-39 kg ha−1).
Significance
Adoption by growers of the best performing systems should reduce grain yield gaps and reduce mining of soil organic N with no increased risk of environmental N loss.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.