Lu Yang , Chiming Gu , Wei Huang , Haibin Chang , Yuan Gao , Yinshui Li , Jing Dai , Xiaoyong Li , Wenshi Hu , Weidong Cao , Xing Liao , Lu Qin
{"title":"Legume and maize intercropping enhances subsequent oilseed rape productivity and stability under reduced nitrogen input","authors":"Lu Yang , Chiming Gu , Wei Huang , Haibin Chang , Yuan Gao , Yinshui Li , Jing Dai , Xiaoyong Li , Wenshi Hu , Weidong Cao , Xing Liao , Lu Qin","doi":"10.1016/j.fcr.2024.109644","DOIUrl":null,"url":null,"abstract":"<div><div>Legume-inclusive cropping is increasingly appreciated for enhancing crop yield and sustainability. However, their impacts on subsequent oilseed rape productivity under reduced nitrogen (N) inputs have not been well explored. In a five-year field rotation experiment, oilseed rape was cultivated with N fertilizer at zero (MN0), recommended (MN100), and 35 % reduction (MN65) following maize monoculture or preceding lablab (<em>Lablab purpureus</em> (L.) Sweet) intercropping in addition to MN65 (IN65). The productivity and stability of subsequent oilseed rape, and relevant indices of soil fertility and N cycling enzymes were investigated. Compared with the MN0 control, the MN100, MN65 and IN65 treatments increased the rapeseed yield by 0.7- to 1.2-fold. Compared with MN100, MN65 decreased rapeseed yield by 21 % and N uptake by 16 % on average across years. However, preceding lablab intercropping (IN65) recovered yield and N uptake. Treatment IN65 increased soil total N content by 7 % and organic matter by 10 % compared to the monoculture treatments, corresponding to 18–25 % increase in the soil quality index by preceding pulse intercropping. Moreover, in parallel with the increase in soil urease activity, the soil nitrate content in IN65 markedly increased by 18–123 % compared with that in the MN65 or MN100 treatments at most stages of oilseed crop growth. Principal component analysis revealed that the IN65 treatment was well distinguished from the three monoculture treatments, which was attributed primarily to soil nitrate, organic matter, nitrate reductase activity, and microbial biomass N. This enhanced N turnover and availability, in turn, largely contributed to N uptake and yield recovery of subsequent rapeseed crops under reduced N input. Consequently, the yield sustainability and stability of rapeseed following lablab intercropping were greater than those following monoculture, as evidenced by the higher sustainability index (64 % vs. 49 %) and lower variation (20 % vs. 32 %). Overall, these findings indicate that lablab and maize intercropping enhances positive legacies for subsequent rapeseed productivity under reduced N inputs.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"319 ","pages":"Article 109644"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429024003976","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Legume-inclusive cropping is increasingly appreciated for enhancing crop yield and sustainability. However, their impacts on subsequent oilseed rape productivity under reduced nitrogen (N) inputs have not been well explored. In a five-year field rotation experiment, oilseed rape was cultivated with N fertilizer at zero (MN0), recommended (MN100), and 35 % reduction (MN65) following maize monoculture or preceding lablab (Lablab purpureus (L.) Sweet) intercropping in addition to MN65 (IN65). The productivity and stability of subsequent oilseed rape, and relevant indices of soil fertility and N cycling enzymes were investigated. Compared with the MN0 control, the MN100, MN65 and IN65 treatments increased the rapeseed yield by 0.7- to 1.2-fold. Compared with MN100, MN65 decreased rapeseed yield by 21 % and N uptake by 16 % on average across years. However, preceding lablab intercropping (IN65) recovered yield and N uptake. Treatment IN65 increased soil total N content by 7 % and organic matter by 10 % compared to the monoculture treatments, corresponding to 18–25 % increase in the soil quality index by preceding pulse intercropping. Moreover, in parallel with the increase in soil urease activity, the soil nitrate content in IN65 markedly increased by 18–123 % compared with that in the MN65 or MN100 treatments at most stages of oilseed crop growth. Principal component analysis revealed that the IN65 treatment was well distinguished from the three monoculture treatments, which was attributed primarily to soil nitrate, organic matter, nitrate reductase activity, and microbial biomass N. This enhanced N turnover and availability, in turn, largely contributed to N uptake and yield recovery of subsequent rapeseed crops under reduced N input. Consequently, the yield sustainability and stability of rapeseed following lablab intercropping were greater than those following monoculture, as evidenced by the higher sustainability index (64 % vs. 49 %) and lower variation (20 % vs. 32 %). Overall, these findings indicate that lablab and maize intercropping enhances positive legacies for subsequent rapeseed productivity under reduced N inputs.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.