R. Mohun , S.C. Middleburgh , P.J. Thomas , C.L. Corkhill
{"title":"Enhanced radiation damage tolerance in Zr-doped UO2","authors":"R. Mohun , S.C. Middleburgh , P.J. Thomas , C.L. Corkhill","doi":"10.1016/j.mtla.2024.102226","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the effect of tetravalent Zr doping on the radiation behaviour of UO<sub>2</sub> through a combination of experimental and theoretical approaches. The intrinsic changes that Zr introduces in UO<sub>2</sub> were quantified using X-ray diffraction and Raman spectroscopy, which reveal a shrinkage of the lattice volume and the formation of ZrO<sub>8</sub>-type clusters. Heavy-ion irradiation was carried out on both undoped and doped UO<sub>2</sub> under conditions similar to the ballistic regime of fission products in nuclear fuels. Empirical data, together with DTF+U simulations, found that Zr doping modifies the irradiation-induced defect mechanisms by enabling recombination pathways, allowing a rapid recovery of the UO<sub>2</sub> lattice. The fundamental mechanisms involving the role of dopant in modifying the radiation damage kinetics are discussed in this paper, as well as the subsequent evolution in fluorite-structured materials relevant to nuclear fuels.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102226"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924002230/pdfft?md5=fdaf063da3101d851801d2fc77525643&pid=1-s2.0-S2589152924002230-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the effect of tetravalent Zr doping on the radiation behaviour of UO2 through a combination of experimental and theoretical approaches. The intrinsic changes that Zr introduces in UO2 were quantified using X-ray diffraction and Raman spectroscopy, which reveal a shrinkage of the lattice volume and the formation of ZrO8-type clusters. Heavy-ion irradiation was carried out on both undoped and doped UO2 under conditions similar to the ballistic regime of fission products in nuclear fuels. Empirical data, together with DTF+U simulations, found that Zr doping modifies the irradiation-induced defect mechanisms by enabling recombination pathways, allowing a rapid recovery of the UO2 lattice. The fundamental mechanisms involving the role of dopant in modifying the radiation damage kinetics are discussed in this paper, as well as the subsequent evolution in fluorite-structured materials relevant to nuclear fuels.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).