Kaiwan K. Fatah , Yaseen T. Mustafa , Imaddadin O. Hassan
{"title":"Groundwater potential mapping in arid and semi-arid regions of kurdistan region of Iraq: A geoinformatics-based machine learning approach","authors":"Kaiwan K. Fatah , Yaseen T. Mustafa , Imaddadin O. Hassan","doi":"10.1016/j.gsd.2024.101337","DOIUrl":null,"url":null,"abstract":"<div><div>Groundwater (GW) is a crucial and increasingly scarce natural resource, that is affected by climate change and mismanagement. To manage GW resources effectively, it is crucial to accurately identify GW potential zones (GWPZs) using modern techniques. This study aimed to employ and assess geoinformatics-based machine learning (ML) models to delineate GWPZs in the Akre district, Kurdistan region of Iraq. Six nonparametric ML models were used: a support vector machine (SVM), k-nearest neighbours (KNN), decision tree (DT), random forest (RF), gradient boost DT (GBDT), and extreme gradient boosting (XGBoost). These models were trained on diverse GWPZ-favourable influencing factors, encompassing topographic, hydrological, geological, and environmental aspects. The findings of this study revealed that the XGBoost model outperformed the other nonparametric models in terms of best-fit performance and accuracy in generating a GW potential map (GWPM), achieving a R<sup>2</sup> of 0.88, a root mean square error (RMSE) of 11.348, and a mean absolute error (MAE) of 6.623. Notably, over half of the study area (53%) was categorised as having high or very high GWPZs, primarily in the low-lying Rovia Plain. The study identified rainfall, elevation, lineament density (LD), drainage density (Dd), topographic wetness index (TWI), and slope as the most significant factors influencing GWPZ modelling. This study provides a comprehensive framework for GW resource management, ecological conservation, and urban development planning. These insights are crucial for stakeholders, policymakers, and local authorities in strategic resource planning and environmental stewardship.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101337"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater (GW) is a crucial and increasingly scarce natural resource, that is affected by climate change and mismanagement. To manage GW resources effectively, it is crucial to accurately identify GW potential zones (GWPZs) using modern techniques. This study aimed to employ and assess geoinformatics-based machine learning (ML) models to delineate GWPZs in the Akre district, Kurdistan region of Iraq. Six nonparametric ML models were used: a support vector machine (SVM), k-nearest neighbours (KNN), decision tree (DT), random forest (RF), gradient boost DT (GBDT), and extreme gradient boosting (XGBoost). These models were trained on diverse GWPZ-favourable influencing factors, encompassing topographic, hydrological, geological, and environmental aspects. The findings of this study revealed that the XGBoost model outperformed the other nonparametric models in terms of best-fit performance and accuracy in generating a GW potential map (GWPM), achieving a R2 of 0.88, a root mean square error (RMSE) of 11.348, and a mean absolute error (MAE) of 6.623. Notably, over half of the study area (53%) was categorised as having high or very high GWPZs, primarily in the low-lying Rovia Plain. The study identified rainfall, elevation, lineament density (LD), drainage density (Dd), topographic wetness index (TWI), and slope as the most significant factors influencing GWPZ modelling. This study provides a comprehensive framework for GW resource management, ecological conservation, and urban development planning. These insights are crucial for stakeholders, policymakers, and local authorities in strategic resource planning and environmental stewardship.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.