The effects of graphene oxide nanoparticles on the mechanical and thermal properties of polyurethane/polycaprolactone nanocomposites; a molecular dynamics approach

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-09-19 DOI:10.1016/j.rineng.2024.102933
Shapour Fadaei Heydari, Mohamad Shahgholi, Arash Karimipour, Mehdi Salehi, Seyed Ali Galehdari
{"title":"The effects of graphene oxide nanoparticles on the mechanical and thermal properties of polyurethane/polycaprolactone nanocomposites; a molecular dynamics approach","authors":"Shapour Fadaei Heydari,&nbsp;Mohamad Shahgholi,&nbsp;Arash Karimipour,&nbsp;Mehdi Salehi,&nbsp;Seyed Ali Galehdari","doi":"10.1016/j.rineng.2024.102933","DOIUrl":null,"url":null,"abstract":"<div><div>Using molecular dynamics simulations using LAMMPS and other tools, this work examined the effect of graphene oxide nanoparticles on the mechanical and thermal properties (TPs) of polyurethane/polycaprolactone nanocomposites. The simulations examined the atomic, MP, and thermodynamic properties of atomic structures while examining and equilibrating them. After 10 ns of equilibration at 300 K and 1 bar, samples were convergent and the simulation parameters were confirmed. The addition of GO-NPs significantly enhanced TPs and MPs, with optimal improvements observed at a 2 % concentration. Specifically, increasing GO-NP content from 0.5 % to 2 % resulted in increases in heat flux from 680.95 to 714.09 W/m<sup>2</sup>, thermal conductivity from 0.69 to 0.93 W/m·K, and Young's modulus from 5.91 to 6.63 MPa. This is while increasing GO-NP content from 0.5 % to 2 % resulted in decreases in both the mean square displacement and glass transition temperature (Temp) to 0.22 Å<sup>2</sup>and 318 K, respectively. However, further increasing the GO-NP concentration to 5 % led to a decrease in HF and TC, likely due to nanoparticle agglomeration, which also reduced mechanical strength and increased MSD and Tg. This study underscores the importance of optimizing GO-NP concentration, with 2 % identified as the most effective for enhancing the properties of PU/PCL/GO-NCs.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"24 ","pages":"Article 102933"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590123024011885/pdfft?md5=31cc558ad2292c568ba5fa07fb44e27f&pid=1-s2.0-S2590123024011885-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024011885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using molecular dynamics simulations using LAMMPS and other tools, this work examined the effect of graphene oxide nanoparticles on the mechanical and thermal properties (TPs) of polyurethane/polycaprolactone nanocomposites. The simulations examined the atomic, MP, and thermodynamic properties of atomic structures while examining and equilibrating them. After 10 ns of equilibration at 300 K and 1 bar, samples were convergent and the simulation parameters were confirmed. The addition of GO-NPs significantly enhanced TPs and MPs, with optimal improvements observed at a 2 % concentration. Specifically, increasing GO-NP content from 0.5 % to 2 % resulted in increases in heat flux from 680.95 to 714.09 W/m2, thermal conductivity from 0.69 to 0.93 W/m·K, and Young's modulus from 5.91 to 6.63 MPa. This is while increasing GO-NP content from 0.5 % to 2 % resulted in decreases in both the mean square displacement and glass transition temperature (Temp) to 0.22 Å2and 318 K, respectively. However, further increasing the GO-NP concentration to 5 % led to a decrease in HF and TC, likely due to nanoparticle agglomeration, which also reduced mechanical strength and increased MSD and Tg. This study underscores the importance of optimizing GO-NP concentration, with 2 % identified as the most effective for enhancing the properties of PU/PCL/GO-NCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化石墨烯纳米颗粒对聚氨酯/聚己内酯纳米复合材料机械性能和热性能的影响;一种分子动力学方法
这项研究利用 LAMMPS 和其他工具进行分子动力学模拟,研究了氧化石墨烯纳米颗粒对聚氨酯/聚己内酯纳米复合材料机械性能和热性能(TPs)的影响。模拟检查了原子结构的原子特性、MP 特性和热力学特性,同时对其进行检查和平衡。在 300 K 和 1 bar 条件下平衡 10 ns 后,样品收敛,模拟参数得到确认。添加 GO-NPs 能显著提高热稳定性和热稳定性,浓度为 2% 时的改善效果最佳。具体来说,GO-NP 含量从 0.5 % 增加到 2 % 时,热通量从 680.95 W/m2 增加到 714.09 W/m2,热导率从 0.69 W/m-K 增加到 0.93 W/m-K,杨氏模量从 5.91 MPa 增加到 6.63 MPa。而将 GO-NP 含量从 0.5 % 提高到 2 % 则会导致平均平方位移和玻璃化转变温度(Temp)分别降低到 0.22 Å2 和 318 K。然而,将 GO-NP 的浓度进一步提高到 5 % 后,HF 和 TC 都有所下降,这可能是由于纳米粒子的团聚造成的,同时也降低了机械强度,增加了 MSD 和 Tg。这项研究强调了优化 GO-NP 浓度的重要性,其中 2% 的浓度对提高聚氨酯/ PCL/GO-NC 的性能最为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Biodiesel production from shrimp shell lipids: Evaluating ZnO nanoparticles as a catalyst Analysis of security and privacy challenges of smart health and sensing systems Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions Advances on hybrid modelling for bioprocesses engineering: Insights into research trends and future directions from a bibliometric approach Nano biosensors: Classification, electrochemistry, nanostructures, and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1