Advances on hybrid modelling for bioprocesses engineering: Insights into research trends and future directions from a bibliometric approach

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-12-01 DOI:10.1016/j.rineng.2024.103548
Juan Federico Herrera-Ruiz, Javier Fontalvo, Oscar Andrés Prado-Rubio
{"title":"Advances on hybrid modelling for bioprocesses engineering: Insights into research trends and future directions from a bibliometric approach","authors":"Juan Federico Herrera-Ruiz,&nbsp;Javier Fontalvo,&nbsp;Oscar Andrés Prado-Rubio","doi":"10.1016/j.rineng.2024.103548","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid modeling in bioprocess engineering has emerged as a promising approach to strengthen process system engineering applications. However, understanding evolution of the field structure is a challenge. To address this gap, we conducted a comprehensive bibliometric analysis of the field. This study aims to assess publications metadata quantitatively and qualitatively to map the research landscape. Through a systematic review of Scopus and Web of Science databases, 360 contributions have been identified within chemical or biochemical engineering. Using Bibliometrix®, Tree of Science®, VantagePoint®, VOSViewer®, and Python, metadata was analyzed and visualized, revealing \"hybrid model\" and \"neural networks\" are the central keywords on the field, with notable contributions from countries like Portugal and the United States of America. Thematic analysis unveiled three clusters: one dealing with control applications and other two that combine machine learning terminology with bioprocesses concepts. Furthermore, the field exhibits a high level of collaboration, with leading researchers such as Rui Oliveira and Moritz von Stosch making significant contributions. Based on these findings, insights into the research trends and future directions are presented.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"24 ","pages":"Article 103548"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024017912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid modeling in bioprocess engineering has emerged as a promising approach to strengthen process system engineering applications. However, understanding evolution of the field structure is a challenge. To address this gap, we conducted a comprehensive bibliometric analysis of the field. This study aims to assess publications metadata quantitatively and qualitatively to map the research landscape. Through a systematic review of Scopus and Web of Science databases, 360 contributions have been identified within chemical or biochemical engineering. Using Bibliometrix®, Tree of Science®, VantagePoint®, VOSViewer®, and Python, metadata was analyzed and visualized, revealing "hybrid model" and "neural networks" are the central keywords on the field, with notable contributions from countries like Portugal and the United States of America. Thematic analysis unveiled three clusters: one dealing with control applications and other two that combine machine learning terminology with bioprocesses concepts. Furthermore, the field exhibits a high level of collaboration, with leading researchers such as Rui Oliveira and Moritz von Stosch making significant contributions. Based on these findings, insights into the research trends and future directions are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Biodiesel production from shrimp shell lipids: Evaluating ZnO nanoparticles as a catalyst Analysis of security and privacy challenges of smart health and sensing systems Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions Advances on hybrid modelling for bioprocesses engineering: Insights into research trends and future directions from a bibliometric approach Nano biosensors: Classification, electrochemistry, nanostructures, and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1