Electroreduction of CO2 to methane with triazole molecular catalysts

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-09-24 DOI:10.1038/s41560-024-01645-0
Zhanyou Xu, Ruihu Lu, Zih-Yi Lin, Weixing Wu, Hsin-Jung Tsai, Qian Lu, Yuguang C. Li, Sung-Fu Hung, Chunshan Song, Jimmy C. Yu, Ziyun Wang, Ying Wang
{"title":"Electroreduction of CO2 to methane with triazole molecular catalysts","authors":"Zhanyou Xu, Ruihu Lu, Zih-Yi Lin, Weixing Wu, Hsin-Jung Tsai, Qian Lu, Yuguang C. Li, Sung-Fu Hung, Chunshan Song, Jimmy C. Yu, Ziyun Wang, Ying Wang","doi":"10.1038/s41560-024-01645-0","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical CO<sub>2</sub> reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO<sub>2</sub> to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO<sub>2</sub>-to-CH<sub>4</sub> conversion with Faradaic efficiency of (52 ± 4)% and turnover frequency of 23,060 h<sup>−1</sup> at 250 mA cm<sup>−2</sup>. Our mechanistic studies suggest that the CO<sub>2</sub> reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO<sub>2</sub>–*COOH–*C(OH)<sub>2</sub>–*COH to produce CH<sub>4</sub> due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm<sup>−2</sup>) for 10 h is able to produce CH<sub>4</sub> at a rate of 23.0 mmol h<sup>−1</sup>.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01645-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical CO2 reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO2 to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO2-to-CH4 conversion with Faradaic efficiency of (52 ± 4)% and turnover frequency of 23,060 h−1 at 250 mA cm−2. Our mechanistic studies suggest that the CO2 reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO2–*COOH–*C(OH)2–*COH to produce CH4 due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm−2) for 10 h is able to produce CH4 at a rate of 23.0 mmol h−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三唑分子催化剂将二氧化碳电还原为甲烷
为获得增值燃料和原料而进行的电化学二氧化碳还原反应通常依赖于金属催化剂。与金属催化剂相比,有机分子催化剂具有更敏锐的可调性,但在长期运行的工业相关电流密度条件下,有机分子催化剂仍无法将二氧化碳催化成碳氢化合物,催化机理也仍然难以捉摸。在此,我们报告了基于 3,5-二氨基-1,2,4-三唑的膜电极组件在 250 mA cm-2 条件下将 CO2 转化为 CH4 的过程,其法拉第效率为 (52 ± 4)%,周转频率为 23,060 h-1。我们的机理研究表明,在 3,5-二氨基-1,2,4-三唑电极上,由于活性位点的空间分布和分子轨道的合适能级,二氧化碳通过中间产物 *CO2-*COOH-*C(OH)2-*COH 还原生成 CH4。在总电流为 10 A(电流密度 = 123 mA cm-2)的条件下运行 10 小时的试验系统能够以 23.0 mmol h-1 的速率产生 CH4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Template and Solid-State-Assisted Assembly of an M9L6 Expanded Coordination Cage for Medium-Sized Molecule Encapsulation. Excited State Dynamics of Geometrical Evolution of α-Substituted Dibenzoylmethanatoboron Difluoride Complex with Aggregation-Induced Emission Property. Solvent-Directed Social Chiral Self-Sorting in Pd2L4 Coordination Cages. Ammonia Synthesis with Visible Light and Quantum Dots. Manganese Oxide-Incorporated Hybrid Lipid Nanoparticles Amplify the Potency of mRNA Vaccine via Oxygen Generation and STING Activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1