Cryogenic tribological behavior of coarse, ultrafine grained and heterogeneous Fe-18Cr-8Ni austenitic stainless steel

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-09-21 DOI:10.1016/j.matchar.2024.114406
{"title":"Cryogenic tribological behavior of coarse, ultrafine grained and heterogeneous Fe-18Cr-8Ni austenitic stainless steel","authors":"","doi":"10.1016/j.matchar.2024.114406","DOIUrl":null,"url":null,"abstract":"<div><div>Commonly used austenitic stainless steels (ASSs) have some limitation in sliding wear conditions due to their relatively low yield strength and hardness. To improve the wear resistance, three kinds of microstructure (coarse grain (CG), heterogeneous structure (HS), and ultrafine grain (UFG)) are prepared, to investigate the grain size on the dry sliding tribological behavior, as well as wear mechanisms of Fe-18Cr-8Ni ASSs at room temperature (RT) and cryogenic temperature (−120 °C). The results indicate that at RT the UFG specimen exhibits the lowest wear rate during the wear tests, where the wear mechanisms are mainly oxidation wear and abrasive wear. While, when tested at −120 °C, the CG specimen exhibits the best wear resistance compared with that of the other two specimens due to its superior plastic deformation ability and strain hardening ability. Moreover, the HS specimen exhibits the lowest coefficient of friction (CoF), which is due to the abrasive particles generated on the contact surface provide a certain level of friction reduction, while the wear rate increases as these particles serve as third-party abrasives, which further removing material.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324007873","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Commonly used austenitic stainless steels (ASSs) have some limitation in sliding wear conditions due to their relatively low yield strength and hardness. To improve the wear resistance, three kinds of microstructure (coarse grain (CG), heterogeneous structure (HS), and ultrafine grain (UFG)) are prepared, to investigate the grain size on the dry sliding tribological behavior, as well as wear mechanisms of Fe-18Cr-8Ni ASSs at room temperature (RT) and cryogenic temperature (−120 °C). The results indicate that at RT the UFG specimen exhibits the lowest wear rate during the wear tests, where the wear mechanisms are mainly oxidation wear and abrasive wear. While, when tested at −120 °C, the CG specimen exhibits the best wear resistance compared with that of the other two specimens due to its superior plastic deformation ability and strain hardening ability. Moreover, the HS specimen exhibits the lowest coefficient of friction (CoF), which is due to the abrasive particles generated on the contact surface provide a certain level of friction reduction, while the wear rate increases as these particles serve as third-party abrasives, which further removing material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粗晶粒、超细晶粒和异质 Fe-18Cr-8Ni 奥氏体不锈钢的低温摩擦学行为
由于屈服强度和硬度相对较低,常用的奥氏体不锈钢(ASS)在滑动磨损条件下具有一定的局限性。为了提高耐磨性,研究人员制备了三种微观结构(粗晶粒 (CG)、异质结构 (HS) 和超细晶粒 (UFG)),以研究晶粒大小对 Fe-18Cr-8Ni ASS 在室温 (RT) 和低温 (-120 °C) 下的干滑动摩擦行为以及磨损机理的影响。结果表明,在室温下,UFG 试样在磨损试验中的磨损率最低,磨损机制主要是氧化磨损和磨料磨损。而在 -120 ℃ 下进行测试时,CG 试样由于其优异的塑性变形能力和应变硬化能力,与其他两种试样相比表现出最佳的耐磨性。此外,HS 试样的摩擦系数(CoF)最低,这是由于接触面上产生的磨料颗粒在一定程度上减少了摩擦,而这些颗粒作为第三方磨料,进一步去除材料,从而增加了磨损率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Quantitative revealing the solute segregation behavior at melt pool boundary in additively manufactured stainless steel using a novel processing method for precise positioning by HAADF-STEM Enhanced high-temperature mechanical properties and strengthening mechanisms of chemically prepared nano-TiC reinforced IN738LC via laser powder bed fusion The effect of oxide scale on the corrosion resistance of SUS301L stainless steel welding joints Enhancing mechanical property and corrosion resistance of Al0.3CoCrFeNi1.5 high entropy alloy via grain boundary engineering Achieving high strength and ductility of Al-Zn-Mg-Cu alloys via laser shock peening and spray forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1