Achieving high strength and ductility of Al-Zn-Mg-Cu alloys via laser shock peening and spray forming

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-10-01 DOI:10.1016/j.matchar.2024.114427
{"title":"Achieving high strength and ductility of Al-Zn-Mg-Cu alloys via laser shock peening and spray forming","authors":"","doi":"10.1016/j.matchar.2024.114427","DOIUrl":null,"url":null,"abstract":"<div><div>In order to further enhance the strength and ductility of ultra-high strength aluminum alloys, the laser shock peening technology was applied to ultra-high strength Al-Zn-Mg-Cu alloy. The ultimate tensile strength, elongation and hardness can reach to 751 MPa, 11 % and 208.3 HV by combining spray forming, secondary extrusion, solid solution, retrogression and reaging as well as laser shock peening. The high strength and hardness of the alloys is mainly attributed to the fine-grained layer on surface as well as new grain boundaries, dislocation cells and high-density dislocations introduced by laser shock peening, uniform nano-sized strengthening phases with high density precipitated during heat treatments. The excellent ductility of the alloys is mainly ascribed to multiple structures including fine-grained layer on surface and slip lines inside different grains introduced by laser shock peening, smaller size of fibrous grains and Al<sub>7</sub>Cu<sub>2</sub>Fe phase produced by secondary extrusion and spray forming. The aging treatment after laser shock peening can lead to the annihilation of high-density dislocations as well as significantly promote the formation of stable and coarse η phase, which can greatly reduce the strength of the studied alloys.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008088","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In order to further enhance the strength and ductility of ultra-high strength aluminum alloys, the laser shock peening technology was applied to ultra-high strength Al-Zn-Mg-Cu alloy. The ultimate tensile strength, elongation and hardness can reach to 751 MPa, 11 % and 208.3 HV by combining spray forming, secondary extrusion, solid solution, retrogression and reaging as well as laser shock peening. The high strength and hardness of the alloys is mainly attributed to the fine-grained layer on surface as well as new grain boundaries, dislocation cells and high-density dislocations introduced by laser shock peening, uniform nano-sized strengthening phases with high density precipitated during heat treatments. The excellent ductility of the alloys is mainly ascribed to multiple structures including fine-grained layer on surface and slip lines inside different grains introduced by laser shock peening, smaller size of fibrous grains and Al7Cu2Fe phase produced by secondary extrusion and spray forming. The aging treatment after laser shock peening can lead to the annihilation of high-density dislocations as well as significantly promote the formation of stable and coarse η phase, which can greatly reduce the strength of the studied alloys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过激光冲击强化和喷射成形实现铝-锌-镁-铜合金的高强度和延展性
为了进一步提高超高强度铝合金的强度和延展性,将激光冲击强化技术应用于超高强度铝-锌-镁-铜合金。通过结合喷射成形、二次挤压、固溶、回火和时效以及激光冲击强化技术,其极限拉伸强度、伸长率和硬度分别达到 751 兆帕、11% 和 208.3 HV。合金的高强度和高硬度主要归功于表面的细晶粒层以及激光冲击强化引入的新晶界、位错单元和高密度位错,以及热处理过程中析出的高密度均匀纳米级强化相。合金的优异延展性主要归因于多种结构,包括激光冲击强化引入的表面细晶粒层和不同晶粒内部的滑移线、较小尺寸的纤维晶粒以及二次挤压和喷射成形产生的 Al7Cu2Fe 相。激光冲击强化后的时效处理可导致高密度位错的湮灭,并显著促进稳定粗大的 η 相的形成,从而大大降低所研究合金的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Quantitative revealing the solute segregation behavior at melt pool boundary in additively manufactured stainless steel using a novel processing method for precise positioning by HAADF-STEM Enhanced high-temperature mechanical properties and strengthening mechanisms of chemically prepared nano-TiC reinforced IN738LC via laser powder bed fusion The effect of oxide scale on the corrosion resistance of SUS301L stainless steel welding joints Enhancing mechanical property and corrosion resistance of Al0.3CoCrFeNi1.5 high entropy alloy via grain boundary engineering Achieving high strength and ductility of Al-Zn-Mg-Cu alloys via laser shock peening and spray forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1