IRS-assisted UAV wireless powered communication network for sustainable federated learning

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Physical Communication Pub Date : 2024-09-18 DOI:10.1016/j.phycom.2024.102504
Ruijie Li , Guoping Zhang , Yun Chen
{"title":"IRS-assisted UAV wireless powered communication network for sustainable federated learning","authors":"Ruijie Li ,&nbsp;Guoping Zhang ,&nbsp;Yun Chen","doi":"10.1016/j.phycom.2024.102504","DOIUrl":null,"url":null,"abstract":"<div><div>Intelligent reflective surface (IRS) and unmanned aerial vehicle (UAV) communication are indispensable potential technologies in the future sixth-generation mobile communication technology (6 G). Utilizing the high beamforming gain of IRS and the high mobility of UAV can achieve ubiquitous network coverage and ensure a high-quality communication environment. Wireless Powered Communication Network (WPCN) is an emerging green communication technology network that converts received radio frequency (RF) signals into electrical energy to power Federated Learning (FL) users. FL users perform local computing and model transmission through the collected energy, ensuring the sustainability of FL. In order to solve the problems of complex communication environment, privacy protection, and energy constraints on terminal devices, we design an FL system based on an IRS-assisted UAV wireless power communication network, which minimizes the UAV transmission energy by jointly optimizing UAV location, IRS phase shift, and resource allocation strategies. We use a low-complexity iterative algorithm to solve this complex non-convex problem. The simulation results show that the performance of the proposed algorithm is obviously better than that of other benchmark schemes, indicating that joint optimization plays an essential role in improving the performance of the system.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102504"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002222","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent reflective surface (IRS) and unmanned aerial vehicle (UAV) communication are indispensable potential technologies in the future sixth-generation mobile communication technology (6 G). Utilizing the high beamforming gain of IRS and the high mobility of UAV can achieve ubiquitous network coverage and ensure a high-quality communication environment. Wireless Powered Communication Network (WPCN) is an emerging green communication technology network that converts received radio frequency (RF) signals into electrical energy to power Federated Learning (FL) users. FL users perform local computing and model transmission through the collected energy, ensuring the sustainability of FL. In order to solve the problems of complex communication environment, privacy protection, and energy constraints on terminal devices, we design an FL system based on an IRS-assisted UAV wireless power communication network, which minimizes the UAV transmission energy by jointly optimizing UAV location, IRS phase shift, and resource allocation strategies. We use a low-complexity iterative algorithm to solve this complex non-convex problem. The simulation results show that the performance of the proposed algorithm is obviously better than that of other benchmark schemes, indicating that joint optimization plays an essential role in improving the performance of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可持续联合学习的 IRS 辅助无人机无线供电通信网络
智能反射面(IRS)和无人机(UAV)通信是未来第六代移动通信技术(6 G)中不可或缺的潜在技术。利用 IRS 的高波束成形增益和无人机的高机动性,可以实现无处不在的网络覆盖,确保高质量的通信环境。无线供电通信网络(WPCN)是一种新兴的绿色通信技术网络,可将接收到的射频(RF)信号转化为电能,为联邦学习(FL)用户供电。FL用户通过收集的能量进行本地计算和模型传输,确保FL的可持续性。为了解决复杂的通信环境、隐私保护和终端设备的能量限制等问题,我们设计了一种基于 IRS 辅助无人机无线电力通信网络的 FL 系统,通过联合优化无人机位置、IRS 相移和资源分配策略,使无人机传输能量最小化。我们采用低复杂度的迭代算法来解决这个复杂的非凸问题。仿真结果表明,所提算法的性能明显优于其他基准方案,表明联合优化在提高系统性能方面发挥了至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
期刊最新文献
Hybrid FSO/RF and UWOC system for enabling terrestrial–underwater communication: Performance analysis Enhancing performance of end-to-end communication system using Attention Mechanism-based Sparse Autoencoder over Rayleigh fading channel Clustering based strategic 3D deployment and trajectory optimization of UAVs with A-star algorithm for enhanced disaster response Modified fractional power allocation for downlink cell-free massive MIMO systems Joint RSU and agent vehicle cooperative localization using mmWave sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1