Ireneusz Górniak, Zachery Stephens, Satchal K. Erramilli, Tomasz Gawda, Anthony A. Kossiakoff, Jochen Zimmer
{"title":"Structural insights into translocation and tailored synthesis of hyaluronan","authors":"Ireneusz Górniak, Zachery Stephens, Satchal K. Erramilli, Tomasz Gawda, Anthony A. Kossiakoff, Jochen Zimmer","doi":"10.1038/s41594-024-01389-1","DOIUrl":null,"url":null,"abstract":"<p>Hyaluronan (HA) is an essential component of the vertebrate extracellular matrix. It is a heteropolysaccharide of <i>N</i>-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) reaching several megadaltons in healthy tissues. HA is synthesized and translocated in a coupled reaction by HA synthase (HAS). Here, structural snapshots of HAS provide insights into HA biosynthesis, from substrate recognition to HA elongation and translocation. We monitor the extension of a GlcNAc primer with GlcA, reveal the coordination of the uridine diphosphate product by a conserved gating loop and capture the opening of a translocation channel to coordinate a translocating HA polymer. Furthermore, we identify channel-lining residues that modulate HA product lengths. Integrating structural and biochemical analyses suggests an avenue for polysaccharide engineering based on finely tuned enzymatic activity and HA coordination.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-024-01389-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hyaluronan (HA) is an essential component of the vertebrate extracellular matrix. It is a heteropolysaccharide of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) reaching several megadaltons in healthy tissues. HA is synthesized and translocated in a coupled reaction by HA synthase (HAS). Here, structural snapshots of HAS provide insights into HA biosynthesis, from substrate recognition to HA elongation and translocation. We monitor the extension of a GlcNAc primer with GlcA, reveal the coordination of the uridine diphosphate product by a conserved gating loop and capture the opening of a translocation channel to coordinate a translocating HA polymer. Furthermore, we identify channel-lining residues that modulate HA product lengths. Integrating structural and biochemical analyses suggests an avenue for polysaccharide engineering based on finely tuned enzymatic activity and HA coordination.
透明质酸(HA)是脊椎动物细胞外基质的重要组成部分。它是一种由 N-乙酰葡糖胺(GlcNAc)和葡萄糖醛酸(GlcA)组成的杂多糖,在健康组织中可达数个百万吨。HA 通过 HA 合成酶(HAS)的耦合反应合成并转运。在这里,HAS 的结构快照提供了对 HA 生物合成(从底物识别到 HA 延伸和转运)的深入了解。我们用 GlcA 监测了 GlcNAc 引物的延伸,揭示了尿苷二磷酸产物通过一个保守的门控环的配位,并捕捉到了转位通道的打开以配位转位的 HA 聚合物。此外,我们还发现了可调节 HA 产物长度的通道衬里残基。将结构分析与生化分析相结合,为基于酶活性和 HA 协调的多糖工程提供了一条途径。