首页 > 最新文献

Nature structural & molecular biology最新文献

英文 中文
Mesoscale chromatin confinement facilitates target search of pioneer transcription factors in live cells 中尺度染色质封闭促进了活细胞中先驱转录因子的目标搜索
Pub Date : 2024-10-04 DOI: 10.1038/s41594-024-01385-5
Zuhui Wang, Bo Wang, Di Niu, Chao Yin, Ying Bi, Claudia Cattoglio, Kyle M. Loh, Luke D. Lavis, Hao Ge, Wulan Deng

Pioneer transcription factors (PTFs) possess the unique capability to access closed chromatin regions and initiate cell fate changes, yet the underlying mechanisms remain elusive. Here, we characterized the single-molecule dynamics of PTFs targeting chromatin in living cells, revealing a notable ‘confined target search’ mechanism. PTFs such as FOXA1, FOXA2, SOX2, OCT4 and KLF4 sampled chromatin more frequently than non-PTF MYC, alternating between fast free diffusion in the nucleus and slower confined diffusion within mesoscale zones. Super-resolved microscopy showed closed chromatin organized as mesoscale nucleosome-dense domains, confining FOXA2 diffusion locally and enriching its binding. We pinpointed specific histone-interacting disordered regions, distinct from DNA-binding domains, crucial for confined target search kinetics and pioneer activity within closed chromatin. Fusion to other factors enhanced pioneer activity. Kinetic simulations suggested that transient confinement could increase target association rate by shortening search time and binding repeatedly. Our findings illuminate how PTFs recognize and exploit closed chromatin organization to access targets, revealing a pivotal aspect of gene regulation.

先锋转录因子(PTFs)具有进入封闭染色质区域并启动细胞命运变化的独特能力,但其潜在机制仍然难以捉摸。在这里,我们描述了活细胞中以染色质为目标的 PTFs 的单分子动力学特征,揭示了一种显著的 "封闭目标搜索 "机制。FOXA1、FOXA2、SOX2、OCT4和KLF4等PTF比非PTF MYC更频繁地取样染色质,在细胞核内快速自由扩散和中尺度区内较慢的封闭扩散之间交替进行。超分辨显微镜显示,封闭染色质组织为中尺度核糖体致密域,在局部限制了 FOXA2 的扩散并丰富了其结合。我们确定了有别于DNA结合域的特定组蛋白相互作用无序区,它们对封闭染色质内的封闭目标搜索动力学和先驱活动至关重要。与其他因子的融合增强了先锋活性。动力学模拟表明,瞬时封闭可以通过缩短搜索时间和重复结合来提高目标结合率。我们的研究结果阐明了 PTF 如何识别并利用封闭染色质组织来访问靶标,揭示了基因调控的一个关键方面。
{"title":"Mesoscale chromatin confinement facilitates target search of pioneer transcription factors in live cells","authors":"Zuhui Wang, Bo Wang, Di Niu, Chao Yin, Ying Bi, Claudia Cattoglio, Kyle M. Loh, Luke D. Lavis, Hao Ge, Wulan Deng","doi":"10.1038/s41594-024-01385-5","DOIUrl":"https://doi.org/10.1038/s41594-024-01385-5","url":null,"abstract":"<p>Pioneer transcription factors (PTFs) possess the unique capability to access closed chromatin regions and initiate cell fate changes, yet the underlying mechanisms remain elusive. Here, we characterized the single-molecule dynamics of PTFs targeting chromatin in living cells, revealing a notable ‘confined target search’ mechanism. PTFs such as FOXA1, FOXA2, SOX2, OCT4 and KLF4 sampled chromatin more frequently than non-PTF MYC, alternating between fast free diffusion in the nucleus and slower confined diffusion within mesoscale zones. Super-resolved microscopy showed closed chromatin organized as mesoscale nucleosome-dense domains, confining FOXA2 diffusion locally and enriching its binding. We pinpointed specific histone-interacting disordered regions, distinct from DNA-binding domains, crucial for confined target search kinetics and pioneer activity within closed chromatin. Fusion to other factors enhanced pioneer activity. Kinetic simulations suggested that transient confinement could increase target association rate by shortening search time and binding repeatedly. Our findings illuminate how PTFs recognize and exploit closed chromatin organization to access targets, revealing a pivotal aspect of gene regulation.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure of Fanzor2 reveals insights into the evolution of the TnpB superfamily Fanzor2的结构揭示了TnpB超家族进化的奥秘
Pub Date : 2024-10-01 DOI: 10.1038/s41594-024-01394-4
Richard D. Schargel, M. Zuhaib Qayyum, Ajay Singh Tanwar, Ravi C. Kalathur, Elizabeth H. Kellogg

RNA-guided endonucleases, once thought to be exclusive to prokaryotes, have been recently identified in eukaryotes and are called Fanzors. They are classified into two clades, Fanzor1 and Fanzor2. Here we present the cryo-electron microscopy structure of Acanthamoeba polyphaga mimivirus Fanzor2, revealing its ωRNA architecture, active site and features involved in transposon-adjacent motif recognition. A comparison to Fanzor1 and TnpB structures highlights divergent evolutionary paths, advancing our understanding of RNA-guided endonucleases.

RNA 引导的内切酶曾被认为是原核生物独有的,最近在真核生物中被发现,并被称为 Fanzor。它们被分为两个支系:Fanzor1 和 Fanzor2。在这里,我们展示了棘阿米巴多瘤拟态病毒 Fanzor2 的冷冻电镜结构,揭示了其 ωRNA 结构、活性位点以及参与转座子邻接基序识别的特征。通过与 Fanzor1 和 TnpB 结构的比较,我们发现了不同的进化路径,从而加深了我们对 RNA 引导的内切酶的了解。
{"title":"Structure of Fanzor2 reveals insights into the evolution of the TnpB superfamily","authors":"Richard D. Schargel, M. Zuhaib Qayyum, Ajay Singh Tanwar, Ravi C. Kalathur, Elizabeth H. Kellogg","doi":"10.1038/s41594-024-01394-4","DOIUrl":"https://doi.org/10.1038/s41594-024-01394-4","url":null,"abstract":"<p>RNA-guided endonucleases, once thought to be exclusive to prokaryotes, have been recently identified in eukaryotes and are called Fanzors. They are classified into two clades, Fanzor1 and Fanzor2. Here we present the cryo-electron microscopy structure of <i>Acanthamoeba polyphaga</i> mimivirus Fanzor2, revealing its ωRNA architecture, active site and features involved in transposon-adjacent motif recognition. A comparison to Fanzor1 and TnpB structures highlights divergent evolutionary paths, advancing our understanding of RNA-guided endonucleases.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into reproduction-regulating NOD-like receptors 对生殖调节 NOD 样受体的深入了解
Pub Date : 2024-09-27 DOI: 10.1038/s41594-024-01383-7
Inga V. Hochheiser, Matthias Geyer
An understudied subset of NOD-like receptors are involved in the reproductive system, and their dysfunction can cause infertility. The recently obtained structures of the core subcortical maternal complex assembled around one of them, NLRP5, provide important insight into this building block of early embryo cytoplasmic lattices.
未被充分研究的 NOD 样受体亚群与生殖系统有关,它们的功能障碍可导致不育。最近获得的围绕NLRP5的核心皮层下母体复合物结构,为我们深入了解早期胚胎细胞质晶格的这一组成部分提供了重要线索。
{"title":"Insights into reproduction-regulating NOD-like receptors","authors":"Inga V. Hochheiser, Matthias Geyer","doi":"10.1038/s41594-024-01383-7","DOIUrl":"https://doi.org/10.1038/s41594-024-01383-7","url":null,"abstract":"An understudied subset of NOD-like receptors are involved in the reproductive system, and their dysfunction can cause infertility. The recently obtained structures of the core subcortical maternal complex assembled around one of them, NLRP5, provide important insight into this building block of early embryo cytoplasmic lattices.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural features within the NORAD long noncoding RNA underlie efficient repression of Pumilio activity NORAD 长非编码 RNA 的结构特征是有效抑制 Pumilio 活性的基础
Pub Date : 2024-09-26 DOI: 10.1038/s41594-024-01393-5
Svetlana Farberov, Omer Ziv, Jian You Lau, Rotem Ben-Tov Perry, Yoav Lubelsky, Eric Miska, Grzegorz Kudla, Igor Ulitsky

Long noncoding RNAs (lncRNAs) are increasingly appreciated for their important functions in mammalian cells. However, how their functional capacities are encoded in their sequences and manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the availability of RNA-binding proteins, but the structural principles that underlie this mode of regulation are unknown. The NORAD lncRNA is a known decoy for Pumilio proteins, which modulate the translation and stability of hundreds of messenger RNAs and, consequently, a regulator of genomic stability and aging. Here we probed the RNA structure and long-range RNA–RNA interactions formed by human NORAD inside cells under different stressful conditions. We discovered a highly modular structure consisting of well-defined domains that contribute independently to NORAD function. Following arsenite stress, most structural domains undergo relaxation and form interactions with other RNAs that are targeted to stress granules. We further revealed a unique structural organization that spatially clusters the multiple Pumilio binding sites along NORAD and consequently contributes to the derepression of Pumilio targets. We then applied these structural principles to design an effective artificial decoy for the let-7 microRNA. Our work demonstrates how the sequence of a lncRNA spatially clusters its function into separated domains and how structural principles can be employed for the rational design of lncRNAs with desired activities.

长非编码 RNA(lncRNA)在哺乳动物细胞中的重要功能日益受到重视。然而,它们的功能能力是如何在其序列中编码并在其结构中体现出来的,在很大程度上仍是未知数。一些 lncRNA 与 RNA 结合蛋白结合并调节其可用性,但这种调控模式的结构原理尚不清楚。NORAD lncRNA 是已知的 Pumilio 蛋白的诱饵,它能调节数百种信使 RNA 的翻译和稳定性,因此也是基因组稳定性和衰老的调节因子。在这里,我们探究了人类 NORAD 在不同应激条件下在细胞内形成的 RNA 结构和长程 RNA-RNA 相互作用。我们发现了一种高度模块化的结构,该结构由定义明确的结构域组成,这些结构域对 NORAD 的功能起着独立的作用。亚砷酸盐应激后,大多数结构域发生松弛,并与其他靶向应激颗粒的 RNA 形成相互作用。我们进一步揭示了一种独特的结构组织,它在空间上将 NORAD 上的多个 Pumilio 结合位点聚集在一起,从而有助于 Pumilio 目标的抑制。然后,我们应用这些结构原理设计了一种有效的 let-7 microRNA 人工诱饵。我们的工作证明了 lncRNA 的序列如何在空间上将其功能聚集到分离的域中,以及如何利用结构原理合理设计具有所需活性的 lncRNA。
{"title":"Structural features within the NORAD long noncoding RNA underlie efficient repression of Pumilio activity","authors":"Svetlana Farberov, Omer Ziv, Jian You Lau, Rotem Ben-Tov Perry, Yoav Lubelsky, Eric Miska, Grzegorz Kudla, Igor Ulitsky","doi":"10.1038/s41594-024-01393-5","DOIUrl":"https://doi.org/10.1038/s41594-024-01393-5","url":null,"abstract":"<p>Long noncoding RNAs (lncRNAs) are increasingly appreciated for their important functions in mammalian cells. However, how their functional capacities are encoded in their sequences and manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the availability of RNA-binding proteins, but the structural principles that underlie this mode of regulation are unknown. The NORAD lncRNA is a known decoy for Pumilio proteins, which modulate the translation and stability of hundreds of messenger RNAs and, consequently, a regulator of genomic stability and aging. Here we probed the RNA structure and long-range RNA–RNA interactions formed by human NORAD inside cells under different stressful conditions. We discovered a highly modular structure consisting of well-defined domains that contribute independently to NORAD function. Following arsenite stress, most structural domains undergo relaxation and form interactions with other RNAs that are targeted to stress granules. We further revealed a unique structural organization that spatially clusters the multiple Pumilio binding sites along NORAD and consequently contributes to the derepression of Pumilio targets. We then applied these structural principles to design an effective artificial decoy for the let-7 microRNA. Our work demonstrates how the sequence of a lncRNA spatially clusters its function into separated domains and how structural principles can be employed for the rational design of lncRNAs with desired activities.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights into translocation and tailored synthesis of hyaluronan 透明质酸转运和定制合成的结构性启示
Pub Date : 2024-09-25 DOI: 10.1038/s41594-024-01389-1
Ireneusz Górniak, Zachery Stephens, Satchal K. Erramilli, Tomasz Gawda, Anthony A. Kossiakoff, Jochen Zimmer

Hyaluronan (HA) is an essential component of the vertebrate extracellular matrix. It is a heteropolysaccharide of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) reaching several megadaltons in healthy tissues. HA is synthesized and translocated in a coupled reaction by HA synthase (HAS). Here, structural snapshots of HAS provide insights into HA biosynthesis, from substrate recognition to HA elongation and translocation. We monitor the extension of a GlcNAc primer with GlcA, reveal the coordination of the uridine diphosphate product by a conserved gating loop and capture the opening of a translocation channel to coordinate a translocating HA polymer. Furthermore, we identify channel-lining residues that modulate HA product lengths. Integrating structural and biochemical analyses suggests an avenue for polysaccharide engineering based on finely tuned enzymatic activity and HA coordination.

透明质酸(HA)是脊椎动物细胞外基质的重要组成部分。它是一种由 N-乙酰葡糖胺(GlcNAc)和葡萄糖醛酸(GlcA)组成的杂多糖,在健康组织中可达数个百万吨。HA 通过 HA 合成酶(HAS)的耦合反应合成并转运。在这里,HAS 的结构快照提供了对 HA 生物合成(从底物识别到 HA 延伸和转运)的深入了解。我们用 GlcA 监测了 GlcNAc 引物的延伸,揭示了尿苷二磷酸产物通过一个保守的门控环的配位,并捕捉到了转位通道的打开以配位转位的 HA 聚合物。此外,我们还发现了可调节 HA 产物长度的通道衬里残基。将结构分析与生化分析相结合,为基于酶活性和 HA 协调的多糖工程提供了一条途径。
{"title":"Structural insights into translocation and tailored synthesis of hyaluronan","authors":"Ireneusz Górniak, Zachery Stephens, Satchal K. Erramilli, Tomasz Gawda, Anthony A. Kossiakoff, Jochen Zimmer","doi":"10.1038/s41594-024-01389-1","DOIUrl":"https://doi.org/10.1038/s41594-024-01389-1","url":null,"abstract":"<p>Hyaluronan (HA) is an essential component of the vertebrate extracellular matrix. It is a heteropolysaccharide of <i>N</i>-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) reaching several megadaltons in healthy tissues. HA is synthesized and translocated in a coupled reaction by HA synthase (HAS). Here, structural snapshots of HAS provide insights into HA biosynthesis, from substrate recognition to HA elongation and translocation. We monitor the extension of a GlcNAc primer with GlcA, reveal the coordination of the uridine diphosphate product by a conserved gating loop and capture the opening of a translocation channel to coordinate a translocating HA polymer. Furthermore, we identify channel-lining residues that modulate HA product lengths. Integrating structural and biochemical analyses suggests an avenue for polysaccharide engineering based on finely tuned enzymatic activity and HA coordination.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights into CXCR4 modulation and oligomerization 对 CXCR4 调制和寡聚化的结构见解
Pub Date : 2024-09-23 DOI: 10.1038/s41594-024-01397-1
Kei Saotome, Luke L. McGoldrick, Jo-Hao Ho, Trudy F. Ramlall, Sweta Shah, Michael J. Moore, Jee Hae Kim, Raymond Leidich, William C. Olson, Matthew C. Franklin

Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.

趋化因子配体 CXCL12 激活了趋化因子受体 CXCR4,从而调节了多种细胞过程。之前报道的 CXCR4 晶体结构揭示了一种非活性、同二聚体受体的结构。然而,人们对 CXCR4 的许多结构方面仍然知之甚少。在这里,我们使用冷冻电镜研究了人类 CXCR4 的各种调控模式。CXCL12 通过将其 N 端插入 CXCR4 正交口袋深处来激活 CXCR4。美国食品和药物管理局批准的拮抗剂 AMD3100 可通过与七跨膜螺旋束中的酸性残基发生静电相互作用而稳定与 CXCR4 的结合。强效抗体阻断剂 REGN7663 可穿过 CXCR4 的细胞外表面与之结合,并将其互补性决定区 H3 环插入正交口袋。CXCR4 的三聚体和四聚体结构揭示了 G 蛋白偶联受体寡聚化的模式。我们的研究表明,CXCR4 在三聚体和四聚体组装中采用了不同的亚基构象,突出了寡聚化如何通过异构调节趋化因子受体的功能。
{"title":"Structural insights into CXCR4 modulation and oligomerization","authors":"Kei Saotome, Luke L. McGoldrick, Jo-Hao Ho, Trudy F. Ramlall, Sweta Shah, Michael J. Moore, Jee Hae Kim, Raymond Leidich, William C. Olson, Matthew C. Franklin","doi":"10.1038/s41594-024-01397-1","DOIUrl":"https://doi.org/10.1038/s41594-024-01397-1","url":null,"abstract":"<p>Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-EM structures of the Spo11 core complex bound to DNA 与 DNA 结合的 Spo11 核心复合物的冷冻电镜结构
Pub Date : 2024-09-20 DOI: 10.1038/s41594-024-01382-8
You Yu, Juncheng Wang, Kaixian Liu, Zhi Zheng, Meret Arter, Corentin Claeys Bouuaert, Stephen Pu, Dinshaw J. Patel, Scott Keeney

DNA double-strand breaks that initiate meiotic recombination are formed by the topoisomerase-relative enzyme Spo11, supported by conserved auxiliary factors. Because high-resolution structural data have not been available, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-electron microscopy structures at up to 3.3-Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104 and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3′-OH and first 5′ overhanging nucleotide, establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.

启动减数分裂重组的 DNA 双链断裂是由拓扑异构酶相关酶 Spo11 在保守辅助因子的支持下形成的。由于尚未获得高分辨率的结构数据,有关 Spo11 及其伙伴的结构以及它们如何与 DNA 结合的许多问题依然存在。我们报告了酿酒酵母 Spo11 与 Rec102、Rec104 和 Ski8 的 DNA 结合核心复合物的高达 3.3 Å 分辨率的低温电子显微镜结构。在这些结构中,单体核心复合物与 DNA 主干以及凹陷的 3′-OH和第一个 5′悬垂核苷酸广泛接触,从而确定了 DNA 末端结合特异性的分子决定因素,并深入了解了体内 DNA 的裂解偏好。单个亚基及其界面的结构得到了酵母中功能数据的支持,使人们深入了解了金属离子在 DNA 结合中的作用,并发现了核心复合物 Top6BL 组成部分同源物中意想不到的结构变异。
{"title":"Cryo-EM structures of the Spo11 core complex bound to DNA","authors":"You Yu, Juncheng Wang, Kaixian Liu, Zhi Zheng, Meret Arter, Corentin Claeys Bouuaert, Stephen Pu, Dinshaw J. Patel, Scott Keeney","doi":"10.1038/s41594-024-01382-8","DOIUrl":"https://doi.org/10.1038/s41594-024-01382-8","url":null,"abstract":"<p>DNA double-strand breaks that initiate meiotic recombination are formed by the topoisomerase-relative enzyme Spo11, supported by conserved auxiliary factors. Because high-resolution structural data have not been available, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-electron microscopy structures at up to 3.3-Å resolution of DNA-bound core complexes of <i>Saccharomyces cerevisiae</i> Spo11 with Rec102, Rec104 and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3′-OH and first 5′ overhanging nucleotide, establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth EZH2 和 REST 抑制剂对超级沉默子的扰动会导致染色质相互作用的大量丧失,并降低癌症生长速度
Pub Date : 2024-09-20 DOI: 10.1038/s41594-024-01391-7
Ying Zhang, Kaijing Chen, Seng Chuan Tang, Yichao Cai, Akiko Nambu, Yi Xiang See, Chaoyu Fu, Anandhkumar Raju, Benjamin Lebeau, Zixun Ling, Jia Jia Chan, Yvonne Tay, Marek Mutwil, Manikandan Lakshmanan, Greg Tucker-Kellogg, Wee Joo Chng, Daniel G. Tenen, Motomi Osato, Vinay Tergaonkar, Melissa Jane Fullwood

Human silencers have been shown to regulate developmental gene expression. However, the functional importance of human silencers needs to be elucidated, such as whether they can form ‘super-silencers’ and whether they are linked to cancer progression. Here, we show two silencer components of the FGF18 gene can cooperate through compensatory chromatin interactions to form a super-silencer. Double knockout of two silencers exhibited synergistic upregulation of FGF18 expression and changes in cell identity. To perturb the super-silencers, we applied combinational treatment of an enhancer of zeste homolog 2 inhibitor GSK343, and a repressor element 1-silencing transcription factor inhibitor, X5050 (‘GR’). Interestingly, GR led to severe loss of topologically associated domains and loops, which were associated with reduced CTCF and TOP2A mRNA levels. Moreover, GR synergistically upregulated super-silencer-controlled genes related to cell cycle, apoptosis and DNA damage, leading to anticancer effects in vivo. Overall, our data demonstrated a super-silencer example and showed that GR can disrupt super-silencers, potentially leading to cancer ablation.

人类沉默子已被证明能调节发育基因的表达。然而,人类沉默子的功能重要性还有待阐明,例如它们是否能形成 "超级沉默子 "以及它们是否与癌症进展有关。在这里,我们发现 FGF18 基因的两个沉默子成分可以通过补偿性染色质相互作用合作形成超级沉默子。双重敲除两个沉默子可协同上调 FGF18 的表达并改变细胞特性。为了扰乱超级沉默子,我们使用了泽斯特同源增强子2抑制剂GSK343和抑制元件1-沉默转录因子抑制剂X5050("GR")。有趣的是,GR导致拓扑相关结构域和环的严重缺失,这与CTCF和TOP2A mRNA水平的降低有关。此外,GR 还能协同上调与细胞周期、细胞凋亡和 DNA 损伤相关的超级消音器控制基因,从而在体内产生抗癌作用。总之,我们的数据展示了一个超级消音器实例,并表明GR可以破坏超级消音器,从而可能导致癌症消融。
{"title":"Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth","authors":"Ying Zhang, Kaijing Chen, Seng Chuan Tang, Yichao Cai, Akiko Nambu, Yi Xiang See, Chaoyu Fu, Anandhkumar Raju, Benjamin Lebeau, Zixun Ling, Jia Jia Chan, Yvonne Tay, Marek Mutwil, Manikandan Lakshmanan, Greg Tucker-Kellogg, Wee Joo Chng, Daniel G. Tenen, Motomi Osato, Vinay Tergaonkar, Melissa Jane Fullwood","doi":"10.1038/s41594-024-01391-7","DOIUrl":"https://doi.org/10.1038/s41594-024-01391-7","url":null,"abstract":"<p>Human silencers have been shown to regulate developmental gene expression. However, the functional importance of human silencers needs to be elucidated, such as whether they can form ‘super-silencers’ and whether they are linked to cancer progression. Here, we show two silencer components of the <i>FGF18</i> gene can cooperate through compensatory chromatin interactions to form a super-silencer. Double knockout of two silencers exhibited synergistic upregulation of <i>FGF18</i> expression and changes in cell identity. To perturb the super-silencers, we applied combinational treatment of an enhancer of zeste homolog 2 inhibitor GSK343, and a repressor element 1-silencing transcription factor inhibitor, X5050 (‘GR’). Interestingly, GR led to severe loss of topologically associated domains and loops, which were associated with reduced <i>CTCF</i> and <i>TOP2A</i> mRNA levels. Moreover, GR synergistically upregulated super-silencer-controlled genes related to cell cycle, apoptosis and DNA damage, leading to anticancer effects in vivo. Overall, our data demonstrated a super-silencer example and showed that GR can disrupt super-silencers, potentially leading to cancer ablation.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome. 出版商更正:mitoribosome依赖LRPPRC-SLIRP翻译的结构基础。
Pub Date : 2024-09-19 DOI: 10.1038/s41594-024-01402-7
Vivek Singh,J Conor Moran,Yuzuru Itoh,Iliana C Soto,Flavia Fontanesi,Mary Couvillion,Martijn A Huynen,L Stirling Churchman,Antoni Barrientos,Alexey Amunts
{"title":"Publisher Correction: Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome.","authors":"Vivek Singh,J Conor Moran,Yuzuru Itoh,Iliana C Soto,Flavia Fontanesi,Mary Couvillion,Martijn A Huynen,L Stirling Churchman,Antoni Barrientos,Alexey Amunts","doi":"10.1038/s41594-024-01402-7","DOIUrl":"https://doi.org/10.1038/s41594-024-01402-7","url":null,"abstract":"","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis DNA 聚合酶 κ 在转座子 DNA 合成中的催化和非催化功能
Pub Date : 2024-09-19 DOI: 10.1038/s41594-024-01395-3
Selene Sellés-Baiget, Sara M. Ambjørn, Alberto Carli, Ivo A. Hendriks, Irene Gallina, Norman E. Davey, Bente Benedict, Alessandra Zarantonello, Sampath A. Gadi, Bob Meeusen, Emil P. T. Hertz, Laura Slappendel, Daniel Semlow, Shana Sturla, Michael L. Nielsen, Jakob Nilsson, Thomas C. R. Miller, Julien P. Duxin

Translesion DNA synthesis (TLS) is a cellular process that enables the bypass of DNA lesions encountered during DNA replication and is emerging as a primary target of chemotherapy. Among vertebrate DNA polymerases, polymerase κ (Polκ) has the distinctive ability to bypass minor groove DNA adducts in vitro. However, Polκ is also required for cells to overcome major groove DNA adducts but the basis of this requirement is unclear. Here, we combine CRISPR base-editor screening technology in human cells with TLS analysis of defined DNA lesions in Xenopus egg extracts to unravel the functions and regulations of Polκ during lesion bypass. Strikingly, we show that Polκ has two main functions during TLS, which are differentially regulated by Rev1 binding. On the one hand, Polκ is essential to replicate across a minor groove DNA lesion in a process that depends on PCNA ubiquitylation but is independent of Rev1. On the other hand, through its cooperative interaction with Rev1 and ubiquitylated PCNA, Polκ appears to stabilize the Rev1–Polζ extension complex on DNA to allow extension past major groove DNA lesions and abasic sites, in a process that is independent of Polκ’s catalytic activity. Together, our work identifies catalytic and noncatalytic functions of Polκ in TLS and reveals important regulatory mechanisms underlying the unique domain architecture present at the C-terminal end of Y-family TLS polymerases.

转座DNA合成(TLS)是一个细胞过程,它能绕过DNA复制过程中遇到的DNA病变,并逐渐成为化疗的一个主要靶点。在脊椎动物的DNA聚合酶中,聚合酶κ(Polκ)具有绕过体外小沟DNA加合物的独特能力。然而,细胞也需要 Polκ 来克服主沟 DNA 加合物,但这一要求的基础尚不清楚。在这里,我们将人体细胞中的CRISPR碱基编辑器筛选技术与爪蟾卵提取物中定义的DNA病变的TLS分析相结合,揭示了Polκ在病变旁路过程中的功能和调控。令人震惊的是,我们发现 Polκ 在 TLS 期间有两种主要功能,它们受 Rev1 结合的调控不同。一方面,Polκ对于跨越小沟DNA病变的复制至关重要,这一过程依赖于PCNA泛素化,但与Rev1无关。另一方面,通过与 Rev1 和泛素化 PCNA 的合作作用,Polκ 似乎能稳定 DNA 上的 Rev1-Polζ 延伸复合物,使其延伸穿过主沟 DNA 病变和缺失位点,这一过程与 Polκ 的催化活性无关。总之,我们的工作确定了 Polκ 在 TLS 中的催化和非催化功能,并揭示了 Y-家族 TLS 聚合酶 C 端独特结构域的重要调控机制。
{"title":"Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis","authors":"Selene Sellés-Baiget, Sara M. Ambjørn, Alberto Carli, Ivo A. Hendriks, Irene Gallina, Norman E. Davey, Bente Benedict, Alessandra Zarantonello, Sampath A. Gadi, Bob Meeusen, Emil P. T. Hertz, Laura Slappendel, Daniel Semlow, Shana Sturla, Michael L. Nielsen, Jakob Nilsson, Thomas C. R. Miller, Julien P. Duxin","doi":"10.1038/s41594-024-01395-3","DOIUrl":"https://doi.org/10.1038/s41594-024-01395-3","url":null,"abstract":"<p>Translesion DNA synthesis (TLS) is a cellular process that enables the bypass of DNA lesions encountered during DNA replication and is emerging as a primary target of chemotherapy. Among vertebrate DNA polymerases, polymerase κ (Polκ) has the distinctive ability to bypass minor groove DNA adducts in vitro. However, Polκ is also required for cells to overcome major groove DNA adducts but the basis of this requirement is unclear. Here, we combine CRISPR base-editor screening technology in human cells with TLS analysis of defined DNA lesions in <i>Xenopus</i> egg extracts to unravel the functions and regulations of Polκ during lesion bypass. Strikingly, we show that Polκ has two main functions during TLS, which are differentially regulated by Rev1 binding. On the one hand, Polκ is essential to replicate across a minor groove DNA lesion in a process that depends on PCNA ubiquitylation but is independent of Rev1. On the other hand, through its cooperative interaction with Rev1 and ubiquitylated PCNA, Polκ appears to stabilize the Rev1–Polζ extension complex on DNA to allow extension past major groove DNA lesions and abasic sites, in a process that is independent of Polκ’s catalytic activity. Together, our work identifies catalytic and noncatalytic functions of Polκ in TLS and reveals important regulatory mechanisms underlying the unique domain architecture present at the C-terminal end of Y-family TLS polymerases.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature structural & molecular biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1