Alexander E.P. Loftus, Marianna S. Romano, Anh Nguyen Phuong, Ben J. McKinnel, Morwenna T. Muir, Muhammad Furqan, John C. Dawson, Lidia Avalle, Adam T. Douglas, Richard L. Mort, Adam Byron, Neil O. Carragher, Steven M. Pollard, Valerie G. Brunton, Margaret C. Frame
{"title":"An ILK/STAT3 pathway controls glioblastoma stem cell plasticity","authors":"Alexander E.P. Loftus, Marianna S. Romano, Anh Nguyen Phuong, Ben J. McKinnel, Morwenna T. Muir, Muhammad Furqan, John C. Dawson, Lidia Avalle, Adam T. Douglas, Richard L. Mort, Adam Byron, Neil O. Carragher, Steven M. Pollard, Valerie G. Brunton, Margaret C. Frame","doi":"10.1016/j.devcel.2024.09.003","DOIUrl":null,"url":null,"abstract":"Glioblastoma (GBM) is driven by malignant neural stem-like cells that display extensive heterogeneity and phenotypic plasticity, which drive tumor progression and therapeutic resistance. Here, we show that the extracellular matrix-cell adhesion protein integrin-linked kinase (ILK) stimulates phenotypic plasticity and mesenchymal-like, invasive behavior in a murine GBM stem cell model. ILK is required for the interconversion of GBM stem cells between malignancy-associated glial-like states, and its loss produces cells that are unresponsive to multiple cell state transition cues. We further show that an ILK/STAT3 signaling pathway controls the plasticity that enables transition of GBM stem cells to an astrocyte-like state <em>in vitro</em> and <em>in vivo</em>. Finally, we find that ILK expression correlates with expression of STAT3-regulated proteins and protein signatures describing astrocyte-like and mesenchymal states in patient tumors. This work identifies ILK as a pivotal regulator of multiple malignancy-associated GBM phenotypes, including phenotypic plasticity and mesenchymal state.","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.09.003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) is driven by malignant neural stem-like cells that display extensive heterogeneity and phenotypic plasticity, which drive tumor progression and therapeutic resistance. Here, we show that the extracellular matrix-cell adhesion protein integrin-linked kinase (ILK) stimulates phenotypic plasticity and mesenchymal-like, invasive behavior in a murine GBM stem cell model. ILK is required for the interconversion of GBM stem cells between malignancy-associated glial-like states, and its loss produces cells that are unresponsive to multiple cell state transition cues. We further show that an ILK/STAT3 signaling pathway controls the plasticity that enables transition of GBM stem cells to an astrocyte-like state in vitro and in vivo. Finally, we find that ILK expression correlates with expression of STAT3-regulated proteins and protein signatures describing astrocyte-like and mesenchymal states in patient tumors. This work identifies ILK as a pivotal regulator of multiple malignancy-associated GBM phenotypes, including phenotypic plasticity and mesenchymal state.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.