On the fabrication of ultrafine-grained potassium-doped tungsten: Mechanical milling and spark plasma sintering of K-doped W powder prepared by evaporation-condensation method

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Fusion Engineering and Design Pub Date : 2024-09-25 DOI:10.1016/j.fusengdes.2024.114678
Meng She , Jianming Nie , Xiaoyan Shu , Lin Feng , Jun Tang , Bo Huang
{"title":"On the fabrication of ultrafine-grained potassium-doped tungsten: Mechanical milling and spark plasma sintering of K-doped W powder prepared by evaporation-condensation method","authors":"Meng She ,&nbsp;Jianming Nie ,&nbsp;Xiaoyan Shu ,&nbsp;Lin Feng ,&nbsp;Jun Tang ,&nbsp;Bo Huang","doi":"10.1016/j.fusengdes.2024.114678","DOIUrl":null,"url":null,"abstract":"<div><div>Bubble strengthened materials have received lots of attention in recent years, and among them, potassium-doped tungsten (W-K) is extremely desirable for very high-temperature applications such as plasma-facing materials in fusion reactors. However, it is difficult to fabricate ultrafine-grained W-K bulk materials by traditional methods. In this study, a novel preparation method of ultra-fine-grained bubble-strengthened material is presented. Unlike traditional routes, W-K mixed powder was prepared by evaporating and condensing pure K on the surface of nanoscale W powder. Two W-K mixing methods using this evaporation-condensation route were developed. Mechanical milling process combined with regular SPS sintering were carried out on the W-K mixed powder, which successfully manufactured ultrafine-grained (0.9 μm) W-K bulk material with a high density (96.4%). This study can provide important reference for the fabrication of other bubble-strengthened materials.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"208 ","pages":"Article 114678"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624005295","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bubble strengthened materials have received lots of attention in recent years, and among them, potassium-doped tungsten (W-K) is extremely desirable for very high-temperature applications such as plasma-facing materials in fusion reactors. However, it is difficult to fabricate ultrafine-grained W-K bulk materials by traditional methods. In this study, a novel preparation method of ultra-fine-grained bubble-strengthened material is presented. Unlike traditional routes, W-K mixed powder was prepared by evaporating and condensing pure K on the surface of nanoscale W powder. Two W-K mixing methods using this evaporation-condensation route were developed. Mechanical milling process combined with regular SPS sintering were carried out on the W-K mixed powder, which successfully manufactured ultrafine-grained (0.9 μm) W-K bulk material with a high density (96.4%). This study can provide important reference for the fabrication of other bubble-strengthened materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于超细晶粒掺钾钨的制备:蒸发-冷凝法制备的掺钾钨粉的机械研磨和火花等离子烧结
近年来,气泡强化材料受到广泛关注,其中,掺钾钨材料(W-K)在超高温应用(如聚变反应堆中的等离子体面材料)中极为理想。然而,用传统方法很难制备出超细晶粒的 W-K 块体材料。本研究提出了一种超细晶粒气泡强化材料的新型制备方法。与传统方法不同,该方法是通过在纳米级 W 粉末表面蒸发和冷凝纯 K 来制备 W-K 混合粉末。利用这种蒸发-冷凝路线开发了两种 W-K 混合方法。对 W-K 混合粉末进行了机械研磨和常规 SPS 烧结,成功制备出了超细晶粒(0.9 μm)、高密度(96.4%)的 W-K 块体材料。这项研究可为其他气泡强化材料的制备提供重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
期刊最新文献
Research and development on vanadium alloys for fusion breeder blanket application JET CODAS - the final status Study and analysis of the design considerations for controlling vertical plasma position in ADITYA-U tokamak Novel high temperature tritium blanket designs for confined spaces in spherical tokamak fusion reactors Installation, thermal curing, qualification testing of divertor and position control coils in ADITYA-U tokamak
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1