Advanced ultrasound vibration potential imaging

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-09-17 DOI:10.1016/j.chphi.2024.100728
Fria Hossein, Panagiota Angeli
{"title":"Advanced ultrasound vibration potential imaging","authors":"Fria Hossein,&nbsp;Panagiota Angeli","doi":"10.1016/j.chphi.2024.100728","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasound Vibration Potential Imaging (UVPI) involves the detection of an electric signal resulting from ultrasound pulses passing through ionic fluids or colloidal systems. The process encompasses the exposure of ionic fluids, or nanoparticle suspensions to external ultrasound pressure waves, inducing ions and nanoparticles to vibrate and produce an electric potential. This potential is then recorded using an electrode sensor connected to the sample of interest. This article reviews the main concepts of UVPI, including the two main types of the technique, Colloid Vibration Potential (CVP) and Ion Vibration Potential (IVP). It is shown that UVPI can detect physicochemical structures of ions and tissue strata that are indiscernible through traditional ultrasound methods, examining specimens like ionic solutions, particle suspensions, and animal (pork) tissue. . The paper demonstrates the potential of UVPI in applications in engineering for nanoparticle and ionic electrolyte analysis, and in medical diagnostics and research. It can potentially be used for tumour diagnostics by analysing the vibrational responses of tissues to ultrasound waves, allowing for the early detection and characterization of tumours.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266702242400272X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound Vibration Potential Imaging (UVPI) involves the detection of an electric signal resulting from ultrasound pulses passing through ionic fluids or colloidal systems. The process encompasses the exposure of ionic fluids, or nanoparticle suspensions to external ultrasound pressure waves, inducing ions and nanoparticles to vibrate and produce an electric potential. This potential is then recorded using an electrode sensor connected to the sample of interest. This article reviews the main concepts of UVPI, including the two main types of the technique, Colloid Vibration Potential (CVP) and Ion Vibration Potential (IVP). It is shown that UVPI can detect physicochemical structures of ions and tissue strata that are indiscernible through traditional ultrasound methods, examining specimens like ionic solutions, particle suspensions, and animal (pork) tissue. . The paper demonstrates the potential of UVPI in applications in engineering for nanoparticle and ionic electrolyte analysis, and in medical diagnostics and research. It can potentially be used for tumour diagnostics by analysing the vibrational responses of tissues to ultrasound waves, allowing for the early detection and characterization of tumours.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进的超声振动电位成像
超声振动电位成像(UVPI)是指检测超声脉冲通过离子液体或胶体系统时产生的电信号。该过程包括将离子液体或纳米颗粒悬浮液暴露于外部超声压力波,诱导离子和纳米颗粒振动并产生电动势。然后使用与相关样品相连的电极传感器记录电势。本文回顾了 UVPI 的主要概念,包括该技术的两种主要类型:胶体振动电位 (CVP) 和离子振动电位 (IVP)。文章指出,UVPI 可以检测离子和组织层的物理化学结构,而传统的超声波方法则无法辨别这些结构,它可以检测离子溶液、颗粒悬浮液和动物(猪肉)组织等样本。.论文展示了 UVPI 在纳米粒子和离子电解质分析工程以及医学诊断和研究方面的应用潜力。通过分析组织对超声波的振动反应,它有可能用于肿瘤诊断,从而实现肿瘤的早期检测和定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1