Na Liu , Xiaojun Yin , Ruigang Zhang , Quansheng Liu
{"title":"A higher dimensional model of geophysical fluid with the complete Coriolis force and vortex structure","authors":"Na Liu , Xiaojun Yin , Ruigang Zhang , Quansheng Liu","doi":"10.1016/j.wavemoti.2024.103410","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we present a higher dimensional model from the vorticity equation, which describes the dynamic characteristics of large scale Rossby waves by utilizing the Gardner-Morikawa coordinate transformation and the perturbation method. To reveal the influence of physical parameters on the higher dimensional model, we first give the dispersion relation of the model and the N-soliton solutions by Hirota method. Subsequently, the lump solutions are derived by using the long wave limit method. It demonstrates that the horizontal component of the Coriolis force acts as a forcing force on the nonlinear Rossby waves, and affects the amplitude of the meridional structure. Moreover, under the background of secondary zonal basic flow, for different lump solutions, the flow field will appear dipole blocking or double vortex structure. It is also indicated that the horizontal Coriolis force only causes the vortex to move in the latitudinal direction.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"131 ","pages":"Article 103410"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001409","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we present a higher dimensional model from the vorticity equation, which describes the dynamic characteristics of large scale Rossby waves by utilizing the Gardner-Morikawa coordinate transformation and the perturbation method. To reveal the influence of physical parameters on the higher dimensional model, we first give the dispersion relation of the model and the N-soliton solutions by Hirota method. Subsequently, the lump solutions are derived by using the long wave limit method. It demonstrates that the horizontal component of the Coriolis force acts as a forcing force on the nonlinear Rossby waves, and affects the amplitude of the meridional structure. Moreover, under the background of secondary zonal basic flow, for different lump solutions, the flow field will appear dipole blocking or double vortex structure. It is also indicated that the horizontal Coriolis force only causes the vortex to move in the latitudinal direction.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.