A numerical study on the penetrability and directivity of the difference-frequency component beam in bubbly liquids obtained via parametric acoustic array
{"title":"A numerical study on the penetrability and directivity of the difference-frequency component beam in bubbly liquids obtained via parametric acoustic array","authors":"María Teresa Tejedor-Sastre , Christian Vanhille","doi":"10.1016/j.wavemoti.2025.103513","DOIUrl":null,"url":null,"abstract":"<div><div>The penetrability and directivity of ultrasound in different media is of interest in engineering and medical applications (imaging, nondestructive testing, sonochemistry, among others). The nonlinearity of a liquid can be used in the parametric antenna framework to generate low-frequency components with particular features from several ultrasonic signals at the source. Bubbly liquids are dispersive liquids in which a small amount of tiny gas bubbles leads to the increase of the nonlinear parameter of the media over certain frequency ranges. Parametric antenna applied to these huge nonlinear media give rise to low-frequency components with relatively small intensity at the source. The evolution of a low-frequency component (difference-frequency component obtained from two primary signals) during its propagation in a bubbly liquid is somehow unknown. It is thus interesting to analyze its characteristics to establish whether this component can benefit from the quality of its own frequency and from the primary frequencies, in terms of directivity and penetrability into the medium. It must be noted that no such study in bubbly liquids exists in the literature, but only for homogeneous media. The aim of this work is to fill this gap. To this end, several numerical models developed previously are used here to analyze the difference-frequency component obtained from a parametric antenna emitting from two ultrasonic signals at the source in one and two-dimensional domains. These models allow us to observe the behavior of this frequency component. An angle that measures the directivity of a beam is also defined. Our results show a point hardly found in the literature: the high directivity and the huge penetrability of the secondary beam associated to the difference-frequency component into the bubbly liquid, compared to the same frequency signal excited directly from the source in the bubbly liquid and to the parametric acoustic array in homogeneous fluids.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"135 ","pages":"Article 103513"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525000241","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The penetrability and directivity of ultrasound in different media is of interest in engineering and medical applications (imaging, nondestructive testing, sonochemistry, among others). The nonlinearity of a liquid can be used in the parametric antenna framework to generate low-frequency components with particular features from several ultrasonic signals at the source. Bubbly liquids are dispersive liquids in which a small amount of tiny gas bubbles leads to the increase of the nonlinear parameter of the media over certain frequency ranges. Parametric antenna applied to these huge nonlinear media give rise to low-frequency components with relatively small intensity at the source. The evolution of a low-frequency component (difference-frequency component obtained from two primary signals) during its propagation in a bubbly liquid is somehow unknown. It is thus interesting to analyze its characteristics to establish whether this component can benefit from the quality of its own frequency and from the primary frequencies, in terms of directivity and penetrability into the medium. It must be noted that no such study in bubbly liquids exists in the literature, but only for homogeneous media. The aim of this work is to fill this gap. To this end, several numerical models developed previously are used here to analyze the difference-frequency component obtained from a parametric antenna emitting from two ultrasonic signals at the source in one and two-dimensional domains. These models allow us to observe the behavior of this frequency component. An angle that measures the directivity of a beam is also defined. Our results show a point hardly found in the literature: the high directivity and the huge penetrability of the secondary beam associated to the difference-frequency component into the bubbly liquid, compared to the same frequency signal excited directly from the source in the bubbly liquid and to the parametric acoustic array in homogeneous fluids.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.