Orange carbon dot nanomaterial as optical/visual sensing platforms for morin and a biomass booster for plant seedlings

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Environmental Chemical Engineering Pub Date : 2024-09-24 DOI:10.1016/j.jece.2024.114244
{"title":"Orange carbon dot nanomaterial as optical/visual sensing platforms for morin and a biomass booster for plant seedlings","authors":"","doi":"10.1016/j.jece.2024.114244","DOIUrl":null,"url":null,"abstract":"<div><div>The precise regulation of morin levels in both diet and medicine is essential to evaluate the nutritional quality of food. Furthermore, plant yield is attracting considerable attention in the agricultural and herbal industries. Accordingly, the sensing platforms based on orange S and N co-doped carbon dots (SNCDs) were developed to detect morin through photoluminescence signals in aqueous solutions, solid matrices, and zebrafish. These sensing platforms exhibited excellent selectivity toward morin and possessed good anti-interference abilities, achieving limits of detection with 0.31 and 0.19 μM in the aqueous solution and solid state, respectively. Furthermore, the application of the as-prepared SNCDs at low concentration enhanced plant growth (using soybean seedlings as a model). The biological effects may be attributed to the promotion of light reaction and excess light reaction-induced injury. These findings offer novel insights into potential applications of SNCDs in sustainable agriculture and environmental monitoring.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023753","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The precise regulation of morin levels in both diet and medicine is essential to evaluate the nutritional quality of food. Furthermore, plant yield is attracting considerable attention in the agricultural and herbal industries. Accordingly, the sensing platforms based on orange S and N co-doped carbon dots (SNCDs) were developed to detect morin through photoluminescence signals in aqueous solutions, solid matrices, and zebrafish. These sensing platforms exhibited excellent selectivity toward morin and possessed good anti-interference abilities, achieving limits of detection with 0.31 and 0.19 μM in the aqueous solution and solid state, respectively. Furthermore, the application of the as-prepared SNCDs at low concentration enhanced plant growth (using soybean seedlings as a model). The biological effects may be attributed to the promotion of light reaction and excess light reaction-induced injury. These findings offer novel insights into potential applications of SNCDs in sustainable agriculture and environmental monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橙色碳点纳米材料作为莫林的光学/视觉传感平台和植物幼苗的生物量促进剂
要评估食物的营养质量,就必须精确调节饮食和药物中的吗啉含量。此外,植物产量在农业和草药产业中也备受关注。因此,我们开发了基于橙色 S 和 N 共掺杂碳点(SNCDs)的传感平台,在水溶液、固体基质和斑马鱼中通过光致发光信号检测吗啉。这些传感平台对吗啉具有极佳的选择性和良好的抗干扰能力,在水溶液和固体状态下的检测限分别为 0.31 和 0.19 μM。此外,低浓度施用制备的 SNCD 还能促进植物生长(以大豆幼苗为模型)。这些生物效应可能是由于促进了光反应和过量光反应引起的损伤。这些发现为 SNCDs 在可持续农业和环境监测领域的潜在应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
期刊最新文献
Advances in the application of graphene oxide composite loose nanofiltration membranes for dye and salt separation Neutralizing the threat: A comprehensive review of chemical warfare agent decontamination strategies Synthesis of bifunctional copolymeric nanofibers with selective extracting U(VI) from the solution and antibacterial property Non-radical activation of peracetic acid by Fe-Co sulfide modified activated carbon for the degradation of refractory organic matter Better waste utilization: Mg-modified biochar from wetland plant waste for phosphorus removal and carbon sequestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1