The migration behaviour of strontium co-implanted with helium into SiC at room temperature and annealed at temperatures above 1000 °C

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-09-24 DOI:10.1016/j.vacuum.2024.113676
{"title":"The migration behaviour of strontium co-implanted with helium into SiC at room temperature and annealed at temperatures above 1000 °C","authors":"","doi":"10.1016/j.vacuum.2024.113676","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigated the migration behaviour of Sr implanted into SiC in the presence of helium (He). Sr ions were implanted into polycrystalline SiC samples (Sr-SiC) at room temperature (RT), and co-implanted with He ions also at RT (Sr + He-SiC). The samples were then annealed isochronally at 1100 °C, 1200 °C, and 1300 °C for 5 h. Transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS) were used to characterize both as-implanted and annealed annealed samples. Sr implantation induced amorphization of SiC, while co-implantation with He led to the formation of He nano-bubbles within the amorphous SiC matrix. During annealing, Sr migrated towards the surface, resulting in loss of Sr, cavity formation, and formation of Sr precipitates in the Sr-SiC samples. In Sr + He-SiC samples, He-induced cavities formed around the projected range of Sr, inhibiting epitaxial regrowth of SiC. As a result, the Sr distribution became concentrated around these He cavities, with Sr trapped both in front and behind them. The enhanced migration of Sr in annealed Sr + He-SiC is attributed to the slower recrystallization of the damaged SiC layer, the presence of larger He-induced cavities, and increased surface roughness. These findings provide insights into Sr migration the mechanisms in SiC, relevant for enhancing the safety of nuclear fuels.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X2400722X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigated the migration behaviour of Sr implanted into SiC in the presence of helium (He). Sr ions were implanted into polycrystalline SiC samples (Sr-SiC) at room temperature (RT), and co-implanted with He ions also at RT (Sr + He-SiC). The samples were then annealed isochronally at 1100 °C, 1200 °C, and 1300 °C for 5 h. Transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS) were used to characterize both as-implanted and annealed annealed samples. Sr implantation induced amorphization of SiC, while co-implantation with He led to the formation of He nano-bubbles within the amorphous SiC matrix. During annealing, Sr migrated towards the surface, resulting in loss of Sr, cavity formation, and formation of Sr precipitates in the Sr-SiC samples. In Sr + He-SiC samples, He-induced cavities formed around the projected range of Sr, inhibiting epitaxial regrowth of SiC. As a result, the Sr distribution became concentrated around these He cavities, with Sr trapped both in front and behind them. The enhanced migration of Sr in annealed Sr + He-SiC is attributed to the slower recrystallization of the damaged SiC layer, the presence of larger He-induced cavities, and increased surface roughness. These findings provide insights into Sr migration the mechanisms in SiC, relevant for enhancing the safety of nuclear fuels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锶与氦在室温下共同植入碳化硅并在 1000 °C 以上温度下退火的迁移行为
本研究调查了在氦(He)存在的情况下将锶植入碳化硅中的迁移行为。在室温(RT)下将硒离子植入多晶 SiC 样品(Sr-SiC),并在室温(RT)下与氦离子共同植入(Sr + He-SiC)。采用透射电子显微镜(TEM)和卢瑟福背散射光谱仪(RBS)对植入后和退火后的样品进行表征。Sr 植入会导致碳化硅发生非晶化,而与 He 共同植入则会在非晶碳化硅基体中形成 He 纳米气泡。在退火过程中,Sr 向表面迁移,导致 Sr-SiC 样品中的 Sr 损失、空腔形成和 Sr 沉淀的形成。在 Sr + He-SiC 样品中,He 引发的空腔在 Sr 的投影范围周围形成,抑制了 SiC 的外延再生长。因此,硒的分布集中在这些氦空穴周围,硒被截留在氦空穴的前面和后面。在退火的 Sr + He-SiC 中,Sr 的迁移增强,这归因于受损 SiC 层的再结晶速度减慢、存在更大的 He 引发的空穴以及表面粗糙度增加。这些发现有助于深入了解碳化硅中的硒迁移机制,从而提高核燃料的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
Ethanol recognition based on carbon quantum dots sensitized Ti3C2Tx MXene and its enhancement effect of ultraviolet condition under low temperature Overall fabrication of uniform BN interphase on 2.5D-SiC fabric via precursor-derived methods Microstructure evolution and mechanical properties of brazing seam of SiCp/Al composites-TC4 titanium alloy composite structure with different La content Microstructure evolution, mechanical properties, and corrosion behavior of in-situ TiC/TC4 composites through Mo addition Determination of fast electrons energy absorbed in the air by measuring the concentration of ozone synthesized in electron beam plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1