Yan Zhao, Qiang Yuan, Liting Yang, Guisheng Liang, Yifeng Cheng, Limin Wu, Chunfu Lin, Renchao Che
{"title":"“Zero-Strain” NiNb2O6 Fibers for All-Climate Lithium Storage","authors":"Yan Zhao, Qiang Yuan, Liting Yang, Guisheng Liang, Yifeng Cheng, Limin Wu, Chunfu Lin, Renchao Che","doi":"10.1007/s40820-024-01497-z","DOIUrl":null,"url":null,"abstract":"<div><p>Niobates are promising all-climate Li<sup>+</sup>-storage anode material due to their fast charge transport, large specific capacities, and resistance to electrolyte reaction. However, their moderate unit-cell-volume expansion (generally 5%–10%) during Li<sup>+</sup> storage causes unsatisfactory long-term cyclability. Here, “zero-strain” NiNb<sub>2</sub>O<sub>6</sub> fibers are explored as a new anode material with comprehensively good electrochemical properties. During Li<sup>+</sup> storage, the expansion of electrochemical inactive NiO<sub>6</sub> octahedra almost fully offsets the shrinkage of active NbO<sub>6</sub> octahedra through reversible O movement. Such superior volume-accommodation capability of the NiO<sub>6</sub> layers guarantees the “zero-strain” behavior of NiNb<sub>2</sub>O<sub>6</sub> in a broad temperature range (0.53%//0.51%//0.74% at 25// − 10//60 °C), leading to the excellent cyclability of the NiNb<sub>2</sub>O<sub>6</sub> fibers (92.8%//99.2% // 91.1% capacity retention after 1000//2000//1000 cycles at 10C and 25// − 10//60 °C). This NiNb<sub>2</sub>O<sub>6</sub> material further exhibits a large reversible capacity (300//184//318 mAh g<sup>−1</sup> at 0.1C and 25// − 10//60 °C) and outstanding rate performance (10 to 0.5C capacity percentage of 64.3%//50.0%//65.4% at 25// − 10//60 °C). Therefore, the NiNb<sub>2</sub>O<sub>6</sub> fibers are especially suitable for large-capacity, fast-charging, long-life, and all-climate lithium-ion batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01497-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01497-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Niobates are promising all-climate Li+-storage anode material due to their fast charge transport, large specific capacities, and resistance to electrolyte reaction. However, their moderate unit-cell-volume expansion (generally 5%–10%) during Li+ storage causes unsatisfactory long-term cyclability. Here, “zero-strain” NiNb2O6 fibers are explored as a new anode material with comprehensively good electrochemical properties. During Li+ storage, the expansion of electrochemical inactive NiO6 octahedra almost fully offsets the shrinkage of active NbO6 octahedra through reversible O movement. Such superior volume-accommodation capability of the NiO6 layers guarantees the “zero-strain” behavior of NiNb2O6 in a broad temperature range (0.53%//0.51%//0.74% at 25// − 10//60 °C), leading to the excellent cyclability of the NiNb2O6 fibers (92.8%//99.2% // 91.1% capacity retention after 1000//2000//1000 cycles at 10C and 25// − 10//60 °C). This NiNb2O6 material further exhibits a large reversible capacity (300//184//318 mAh g−1 at 0.1C and 25// − 10//60 °C) and outstanding rate performance (10 to 0.5C capacity percentage of 64.3%//50.0%//65.4% at 25// − 10//60 °C). Therefore, the NiNb2O6 fibers are especially suitable for large-capacity, fast-charging, long-life, and all-climate lithium-ion batteries.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.