{"title":"Out-of-sample equity premium predictability: An EMD-denoising based model","authors":"Haohua Li , Yuhe Mei , Xianfeng Hao , Zhuo Chen","doi":"10.1016/j.pacfin.2024.102536","DOIUrl":null,"url":null,"abstract":"<div><div>The poor out-of-sample forecasting performance of the stock returns of various predictors has been widely confirmed in the literature, which casts doubt on the reliability of stock-return predictability. However, the reliability of return predictability is closely related to the noise contained in the data. In this study, we design a new method to address the noise in the framework of empirical mode decomposition. The EMD method provides an efficient return decomposition, and based on which we selectively remove high-frequency components that are more likely to be contaminated by outliers. Our new model delivers statistically and economically significant out-of-sample gains relative to the historical average. The predictive ability mainly originates from the business-cycle risk and survives a series of robustness tests.</div></div>","PeriodicalId":48074,"journal":{"name":"Pacific-Basin Finance Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific-Basin Finance Journal","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927538X24002889","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
The poor out-of-sample forecasting performance of the stock returns of various predictors has been widely confirmed in the literature, which casts doubt on the reliability of stock-return predictability. However, the reliability of return predictability is closely related to the noise contained in the data. In this study, we design a new method to address the noise in the framework of empirical mode decomposition. The EMD method provides an efficient return decomposition, and based on which we selectively remove high-frequency components that are more likely to be contaminated by outliers. Our new model delivers statistically and economically significant out-of-sample gains relative to the historical average. The predictive ability mainly originates from the business-cycle risk and survives a series of robustness tests.
期刊介绍:
The Pacific-Basin Finance Journal is aimed at providing a specialized forum for the publication of academic research on capital markets of the Asia-Pacific countries. Primary emphasis will be placed on the highest quality empirical and theoretical research in the following areas: • Market Micro-structure; • Investment and Portfolio Management; • Theories of Market Equilibrium; • Valuation of Financial and Real Assets; • Behavior of Asset Prices in Financial Sectors; • Normative Theory of Financial Management; • Capital Markets of Development; • Market Mechanisms.